These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 11019608)
1. Red radioluminescence and radiochemiluminescence: premises for a photodynamic tumour therapy with X-rays and haematoporphyrin derivatives. A working hypothesis. Bistolfi F Panminerva Med; 2000 Mar; 42(1):69-75. PubMed ID: 11019608 [TBL] [Abstract][Full Text] [Related]
2. [Photodynamic effect of several hematoporphyrin derivatives and their production of singlet oxygen and retention in cancer cells]. Fu NW Zhonghua Zhong Liu Za Zhi; 1986 Mar; 8(2):103-6. PubMed ID: 3769740 [TBL] [Abstract][Full Text] [Related]
3. Photodynamic action and chromosomal damage: a comparison of haematoporphyrin derivative (HpD) and light with X-irradiation. Evensen JF; Moan J Br J Cancer; 1982 Mar; 45(3):456-65. PubMed ID: 7073939 [TBL] [Abstract][Full Text] [Related]
4. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Starkey JR; Rebane AK; Drobizhev MA; Meng F; Gong A; Elliott A; McInnerney K; Spangler CW Clin Cancer Res; 2008 Oct; 14(20):6564-73. PubMed ID: 18927297 [TBL] [Abstract][Full Text] [Related]
5. Optimal photodynamic band of red light in hematoporphyrin derivative (HPD) photoradiation therapy of cancer. Pimstone NR; Gandhi SN Prog Clin Biol Res; 1984; 170():673-8. PubMed ID: 6241707 [No Abstract] [Full Text] [Related]
6. Physico-chemical modeling of the role of free radicals in photodynamic therapy. II. Interactions of ground state sensitizers with free radicals studied by chemiluminescence spectrometry. Vasvári G; Elzemzam S; Gál D Biochem Biophys Res Commun; 1993 Dec; 197(3):1536-42. PubMed ID: 8280173 [TBL] [Abstract][Full Text] [Related]
7. Tritolylporphyrin dimer as a new potent hydrophobic sensitizer for photodynamic therapy of melanoma. Drzewiecka A; Urbańska K; Matuszak Z; Pineiro M; Arnaut LG; Habdas J; Ratuszna A; Stochel G Acta Biochim Pol; 2001; 48(1):277-82. PubMed ID: 11440180 [TBL] [Abstract][Full Text] [Related]
8. [Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles]. Zimcík P; Miletín M Ceska Slov Farm; 2004 Sep; 53(5):219-24. PubMed ID: 15506703 [TBL] [Abstract][Full Text] [Related]
9. Photodynamic therapy in lung and gastrointestinal cancers. Karanov S; Kostadinov D; Shopova M; Kurtev P J Photochem Photobiol B; 1990 Jun; 6(1-2):175-81. PubMed ID: 2121932 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic characteristics of metalloporphyrins used in photodynamic therapy. Pascu ML; Danaila L; Voicu L; Staicu A; Truica S; Ion RM Oftalmologia; 2003; 57(2):73-80. PubMed ID: 12974036 [TBL] [Abstract][Full Text] [Related]
11. [Spectral properties of new photosensitizers for photodynamic diagnosis and therapy]. Li BH; Xie SS; Lu ZK Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):902-4. PubMed ID: 12914159 [TBL] [Abstract][Full Text] [Related]
17. Photocytotoxicity in vivo of haematoporphyrin derivative components. Cowled PA; Forbes IJ Cancer Lett; 1985 Aug; 28(1):111-8. PubMed ID: 4027952 [TBL] [Abstract][Full Text] [Related]
18. A history of photodynamic therapy. Daniell MD; Hill JS Aust N Z J Surg; 1991 May; 61(5):340-8. PubMed ID: 2025186 [TBL] [Abstract][Full Text] [Related]
19. A simple in vitro method to detect singlet oxygen and to compare photodynamic activity using alkaline phosphatase. Yadav HS; Jain V Indian J Biochem Biophys; 1994 Dec; 31(6):490-5. PubMed ID: 7875721 [TBL] [Abstract][Full Text] [Related]
20. Variation in the fluorescence decay properties of haematoporphyrin derivative during its conversion to photoproducts. König K; Wabnitz H; Dietel W J Photochem Photobiol B; 1990 Dec; 8(1):103-11. PubMed ID: 2127429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]