BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11020663)

  • 41. Role of components of the phagocytic NADPH oxidase in oxygen sensing.
    Sanders KA; Sundar KM; He L; Dinger B; Fidone S; Hoidal JR
    J Appl Physiol (1985); 2002 Oct; 93(4):1357-64. PubMed ID: 12235036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of protein kinase D in Fc gamma-receptor activation of the NADPH oxidase in neutrophils.
    Davidson-Moncada JK; Lopez-Lluch G; Segal AW; Dekker LV
    Biochem J; 2002 Apr; 363(Pt 1):95-103. PubMed ID: 11903052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation.
    Görlach A; Kietzmann T; Hess J
    Ann N Y Acad Sci; 2002 Nov; 973():505-7. PubMed ID: 12485919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species.
    Leite LN; do Vale GT; Simplicio JA; De Martinis BS; Carneiro FS; Tirapelli CR
    Eur J Pharmacol; 2017 Jun; 804():82-93. PubMed ID: 28315342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wheat germ agglutinin induces NADPH-oxidase activity in human neutrophils by interaction with mobilizable receptors.
    Karlsson A
    Infect Immun; 1999 Jul; 67(7):3461-8. PubMed ID: 10377127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carotid body chemoreceptor activity in mice deficient in selected subunits of NADPH oxidase.
    He L; Chen J; Dinger B; Sanders K; Sundar K; Hoidal J; Fidone S
    Adv Exp Med Biol; 2003; 536():41-6. PubMed ID: 14635647
    [No Abstract]   [Full Text] [Related]  

  • 47. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.
    Touyz RM; Chen X; Tabet F; Yao G; He G; Quinn MT; Pagano PJ; Schiffrin EL
    Circ Res; 2002 Jun; 90(11):1205-13. PubMed ID: 12065324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current paradigms in cellular oxygen sensing.
    Schumacker PT
    Adv Exp Med Biol; 2003; 543():57-71. PubMed ID: 14713114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway.
    Sambo P; Baroni SS; Luchetti M; Paroncini P; Dusi S; Orlandini G; Gabrielli A
    Arthritis Rheum; 2001 Nov; 44(11):2653-64. PubMed ID: 11710721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pigment epithelium-derived factor inhibits neointimal hyperplasia after vascular injury by blocking NADPH oxidase-mediated reactive oxygen species generation.
    Nakamura K; Yamagishi S; Matsui T; Yoshida T; Takenaka K; Jinnouchi Y; Yoshida Y; Ueda S; Adachi H; Imaizumi T
    Am J Pathol; 2007 Jun; 170(6):2159-70. PubMed ID: 17525281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase.
    Teshima Y; Takahashi N; Nishio S; Saito S; Kondo H; Fukui A; Aoki K; Yufu K; Nakagawa M; Saikawa T
    Circ J; 2014; 78(2):300-6. PubMed ID: 24334638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms.
    Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Gudermann T; Schulz R; Seeger W; Grimminger F; Weissmann N
    Eur Respir J; 2008 Dec; 32(6):1639-51. PubMed ID: 19043010
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NADPH oxidases and vascular remodeling in cardiovascular diseases.
    García-Redondo AB; Aguado A; Briones AM; Salaices M
    Pharmacol Res; 2016 Dec; 114():110-120. PubMed ID: 27773825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NADPH oxidase depletion in neutrophils from patients with cirrhosis and restoration via toll-like receptor 7/8 activation.
    Rolas L; Boussif A; Weiss E; Lettéron P; Haddad O; El-Benna J; Rautou PE; Moreau R; Périanin A
    Gut; 2018 Aug; 67(8):1505-1516. PubMed ID: 28601846
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.
    Idelman G; Smith DLH; Zucker SD
    Redox Biol; 2015 Aug; 5():398-408. PubMed ID: 26163808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenylarsine oxide as an inhibitor of the activation of the neutrophil NADPH oxidase--identification of the beta subunit of the flavocytochrome b component of the NADPH oxidase as a target site for phenylarsine oxide by photoaffinity labeling and photoinactivation.
    Doussiere J; Poinas A; Blais C; Vignais PV
    Eur J Biochem; 1998 Feb; 251(3):649-58. PubMed ID: 9490037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica.
    Sim S; Yong TS; Park SJ; Im KI; Kong Y; Ryu JS; Min DY; Shin MH
    J Immunol; 2005 Apr; 174(7):4279-88. PubMed ID: 15778391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone.
    Paffett ML; Walker BR
    Essays Biochem; 2007; 43():105-19. PubMed ID: 17705796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Suppression of NADPH oxidase attenuates hypoxia-induced dysfunctions of endothelial progenitor cells.
    Liu B; Ren KD; Peng JJ; Li T; Luo XJ; Fan C; Yang JF; Peng J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1080-1087. PubMed ID: 27913300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnesium lithospermate B prevents phenotypic transformation of pulmonary arteries in rats with hypoxic pulmonary hypertension through suppression of NADPH oxidase.
    Li T; Luo XJ; Wang EL; Li NS; Zhang XJ; Song FL; Yang JF; Liu B; Peng J
    Eur J Pharmacol; 2019 Mar; 847():32-41. PubMed ID: 30659826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.