These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11020807)

  • 1. Programmable ultrasound imaging using multimedia technologies: a next-generation ultrasound machine.
    Kim Y; Kim JH; Basoglu C; Winter TC
    IEEE Trans Inf Technol Biomed; 1997 Mar; 1(1):19-29. PubMed ID: 11020807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound processing and computing: review and future directions.
    York G; Kim Y
    Annu Rev Biomed Eng; 1999; 1():559-88. PubMed ID: 11701500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully programmable computing architecture for medical ultrasound machines.
    Schneider FK; Agarwal A; Yoo YM; Fukuoka T; Kim Y
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):538-40. PubMed ID: 19546045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research interface on a programmable ultrasound scanner.
    Shamdasani V; Bae U; Sikdar S; Yoo YM; Karadayi K; Managuli R; Kim Y
    Ultrasonics; 2008 Jul; 48(3):159-68. PubMed ID: 18234260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound color-flow imaging on a programmable system.
    Shamdasani V; Managuli R; Sikdar S; Kim Y
    IEEE Trans Inf Technol Biomed; 2004 Jun; 8(2):191-9. PubMed ID: 15217264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time scan conversion algorithm on commercially available microprocessors.
    Basoglu C; Kim Y; Chalana V
    Ultrason Imaging; 1996 Oct; 18(4):241-60. PubMed ID: 9101646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single mediaprocessor-based programmable ultrasound system.
    Sikdar S; Managuli R; Gong L; Shamdasani V; Mitake T; Hayashi T; Kim Y
    IEEE Trans Inf Technol Biomed; 2003 Mar; 7(1):64-70. PubMed ID: 12670020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer implementation in the reconstruction of 2-D flow velocity fields in ultrasound Doppler color imaging.
    Fei DY; Fu CT; Liu DD
    Comput Biol Med; 1995 Nov; 25(6):495-503. PubMed ID: 8665795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. US extended-field-of-view imaging technology.
    Weng L; Tirumalai AP; Lowery CM; Nock LF; Gustafson DE; Von Behren PL; Kim JH
    Radiology; 1997 Jun; 203(3):877-80. PubMed ID: 9169720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open system for micro-ultrasound.
    Qiu W; Zheng H; Sun L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():97-100. PubMed ID: 24109633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound phase rotation beamforming on multi-core DSP.
    Ma J; Karadayi K; Ali M; Kim Y
    Ultrasonics; 2014 Jan; 54(1):99-105. PubMed ID: 23706261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods.
    Boni E; Bassi L; Dallai A; Guidi F; Ramalli A; Ricci S; Housden J; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1378-85. PubMed ID: 22828833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals.
    Scabia M; Biagi E; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1444-52. PubMed ID: 12403146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live Ultrasound Color-Encoded Speckle Imaging Platform for Real-Time Complex Flow Visualization In Vivo.
    Yiu BYS; Walczak M; Lewandowski M; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):656-668. PubMed ID: 30640607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open medical imaging workstation architecture for platform-independent 3-D medical image processing and visualization.
    Cosić D
    IEEE Trans Inf Technol Biomed; 1997 Dec; 1(4):279-83. PubMed ID: 11020831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound research scanner for real-time synthetic aperture data acquisition.
    Jensen JA; Holm O; Jensen LJ; Bendsen H; Nikolov SI; Tomov BG; Munk P; Hansen M; Salomonsen K; Hansen J; Gormsen K; Pedersen HM; Gammelmark KL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):881-91. PubMed ID: 16048189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A programmable real-time system for development and test of new ultrasound investigation methods.
    Ricci S; Boni E; Guidi F; Morganti T; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1813-9. PubMed ID: 17036789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single FPGA-based portable ultrasound imaging system for point-of-care applications.
    Kim GD; Yoon C; Kye SB; Lee Y; Kang J; Yoo Y; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1386-94. PubMed ID: 22828834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner.
    Hemmsen MC; Nikolov SI; Pedersen MM; Pihl MJ; Enevoldsen MS; Hansen JM; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1487-99. PubMed ID: 22828844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of freehand three-dimensional ultrasound reconstruction techniques.
    Rohling R; Gee A; Berman L
    Med Image Anal; 1999 Dec; 3(4):339-59. PubMed ID: 10709700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.