These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 11021305)
1. Hemoglobin affinity for oxygen in three subspecies of toads (Bufo sp.) living at different altitudes. Ostojic H; Monge C; Cifuentes V Biol Res; 2000; 33(1):5-10. PubMed ID: 11021305 [TBL] [Abstract][Full Text] [Related]
2. Altitudinal distribution and blood values in the toad, Bufo spinulosus Wiegmann. Ruiz G; Rosenmann M; Veloso A Comp Biochem Physiol A Comp Physiol; 1989; 94(4):643-6. PubMed ID: 2575951 [TBL] [Abstract][Full Text] [Related]
3. Ingested energy differs between populations of the toad Bufo bankorensis from different altitudes. Hou PC; Wei HL Physiol Biochem Zool; 2008; 81(1):54-62. PubMed ID: 18040972 [TBL] [Abstract][Full Text] [Related]
4. Comparison of hematological traits and oxygenation properties of hemoglobins from highland and lowland Asiatic toad (Bufo gargarizans). Pu P; Zhao Y; Niu Z; Cao W; Zhang T; He J; Wang J; Tang X; Chen Q J Comp Physiol B; 2021 Nov; 191(6):1019-1029. PubMed ID: 33876256 [TBL] [Abstract][Full Text] [Related]
5. The effect of short- and long-term fasting on digestive and metabolic flexibility in the Andean toad, Bufo spinulosus. Naya DE; Veloso C; Sabat P; Bozinovic F J Exp Biol; 2009 Jul; 212(Pt 14):2167-75. PubMed ID: 19561206 [TBL] [Abstract][Full Text] [Related]
6. Temperature and humidity alter prolactin receptor expression in the skin of toad (Bufo bankorensis and Bufo melanostictus). Li KW; Lee DN; Huang WT; Weng CF Comp Biochem Physiol A Mol Integr Physiol; 2006 Dec; 145(4):509-16. PubMed ID: 17049288 [TBL] [Abstract][Full Text] [Related]
7. Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives. Niu Y; Zhang X; Zhang H; Men S; Xu T; Ding L; Li X; Wang L; Wang H; Storey KB; Chen Q BMC Biol; 2024 Oct; 22(1):231. PubMed ID: 39390465 [TBL] [Abstract][Full Text] [Related]
8. Oxygen transport in blood at high altitude: role of the hemoglobin-oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function. Samaja M; Crespi T; Guazzi M; Vandegriff KD Eur J Appl Physiol; 2003 Oct; 90(3-4):351-9. PubMed ID: 14504945 [TBL] [Abstract][Full Text] [Related]
9. The role of hemoglobin oxygen affinity in oxygen transport at high altitude. Winslow RM Respir Physiol Neurobiol; 2007 Sep; 158(2-3):121-7. PubMed ID: 17449336 [TBL] [Abstract][Full Text] [Related]
10. Oxygen affinity of blood in altitude Sherpas. Samaja M; Veicsteinas A; Cerretelli P J Appl Physiol Respir Environ Exerc Physiol; 1979 Aug; 47(2):337-41. PubMed ID: 468690 [TBL] [Abstract][Full Text] [Related]
11. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose. Meir JU; Milsom WK J Exp Biol; 2013 Jun; 216(Pt 12):2172-5. PubMed ID: 23470665 [TBL] [Abstract][Full Text] [Related]
12. Oxygen transport of hemoglobin in high-altitude animals (Camelidae). Reynafarje C; Faura J; Villavicencio D; Curaca A; Reynafarje B; Oyola L; Contreras L; Vallenas E; Faura A J Appl Physiol; 1975 May; 38(5):806-10. PubMed ID: 1126888 [TBL] [Abstract][Full Text] [Related]
13. Preparation for oxidative stress in Chinese toads (Bufo gargarizans) living under natural conditions along an altitudinal gradient. Zhang H; Xu T; Jiao M; Li X; Storey KB; Niu Y J Exp Zool A Ecol Integr Physiol; 2024 Oct; 341(8):867-879. PubMed ID: 38924686 [TBL] [Abstract][Full Text] [Related]
14. Body fluid and hematologic changes in the toad exposed to 48 h of simulated high altitude. Biswas HM; Patra PB; Boral MC J Appl Physiol Respir Environ Exerc Physiol; 1981 Oct; 51(4):794-7. PubMed ID: 7298419 [TBL] [Abstract][Full Text] [Related]
15. Blood oxygen affinity in high- and low-altitude populations of the deer mouse. Snyder LR; Born S; Lechner AJ Respir Physiol; 1982 Apr; 48(1):89-105. PubMed ID: 7111920 [TBL] [Abstract][Full Text] [Related]
16. Behavioural thermoregulation of the Andean toad (Bufo spinulosus) at high altitudes. Sinsch U Oecologia; 1989 Mar; 80(1):32-8. PubMed ID: 23494342 [TBL] [Abstract][Full Text] [Related]
17. The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian. Burggren WW; Vitalis TZ J Exp Biol; 2005 Jan; 208(Pt 1):105-12. PubMed ID: 15601882 [TBL] [Abstract][Full Text] [Related]
18. Effects of dry season dormancy on oxygen uptake, heart rate, and blood pressures in the toad, Bufo paracnemis. Glass ML; Fernandes MS; Soncini R; Glass H; Wasser JS J Exp Zool; 1997 Nov; 279(4):330-6. PubMed ID: 9360314 [TBL] [Abstract][Full Text] [Related]
19. Control of breathing in an amphibian Bufo paracnemis: effects of temperature and hypoxia. Kruhøffer M; Glass ML; Abe AS; Johansen K Respir Physiol; 1987 Aug; 69(2):267-75. PubMed ID: 3629013 [TBL] [Abstract][Full Text] [Related]
20. Seasonal changes in the preferred body temperature, cardiovascular, and respiratory responses to hypoxia in the toad, Bufo paracnemis. Bícego-Nahas KC; Gargaglioni LH; Branco LG J Exp Zool; 2001 May; 289(6):359-65. PubMed ID: 11351323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]