These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 11021381)
1. Porous polyethylene implant fibrovascularization rate is affected by tissue wrapping, agarose coating, and insertion site. Soparkar CN; Wong JF; Patrinely JR; Davidson JK; Appling D Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):330-6. PubMed ID: 11021381 [TBL] [Abstract][Full Text] [Related]
2. Growth factors embedded in an agarose matrix enhance the rate of porous polyethylene implant biointegration. Soparkar CN; Wong JF; Patrinely JR; Appling D Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):341-6. PubMed ID: 11021383 [TBL] [Abstract][Full Text] [Related]
3. Epidermal and fibroblast growth factors enhance fibrovascular integration of porous polyethylene implants. Soparkar CN; Wong JF; Patrinely JR; Appling D Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):337-40. PubMed ID: 11021382 [TBL] [Abstract][Full Text] [Related]
4. Fibrovascular ingrowth in porous ocular implants: the effect of material composition, porosity, growth factors, and coatings. Bigham WJ; Stanley P; Cahill JM; Curran RW; Perry AC Ophthalmic Plast Reconstr Surg; 1999 Sep; 15(5):317-25. PubMed ID: 10511211 [TBL] [Abstract][Full Text] [Related]
5. Effect of synthetic bone glass particulate on the fibrovascularization of porous polyethylene orbital implants. Choi HY; Lee JE; Park HJ; Oum BS Ophthalmic Plast Reconstr Surg; 2006; 22(2):121-5. PubMed ID: 16550057 [TBL] [Abstract][Full Text] [Related]
6. Comparison of early fibrovascular proliferation according to orbital implant in orbital floor fracture reconstruction. Lee H; Baek S J Craniofac Surg; 2012 Sep; 23(5):1518-23. PubMed ID: 22976649 [TBL] [Abstract][Full Text] [Related]
7. Rate of vascularization and exposure of silicone-capped porous polyethylene spherical implants: an animal model. Kalwerisky K; Mihora L; Czyz CN; Foster JA; Holck DE Ophthalmic Plast Reconstr Surg; 2013; 29(5):350-6. PubMed ID: 23811596 [TBL] [Abstract][Full Text] [Related]
8. Primary placement of a titanium motility post in a porous polyethylene orbital implant: animal model with quantitative assessment of fibrovascular ingrowth and vascular density. Hsu WC; Green JP; Spilker MH; Rubin PA Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):370-9. PubMed ID: 11021387 [TBL] [Abstract][Full Text] [Related]
9. The efficacy of acrylic acid grafting and arginine-glycine-aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits. Park BW; Yang HS; Baek SH; Park K; Han DK; Lee TS Graefes Arch Clin Exp Ophthalmol; 2007 Jun; 245(6):855-62. PubMed ID: 17119998 [TBL] [Abstract][Full Text] [Related]
10. A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model. Gayre GS; Lipham W; Dutton JJ Ophthalmic Plast Reconstr Surg; 2002 Jul; 18(4):275-80. PubMed ID: 12142760 [TBL] [Abstract][Full Text] [Related]
11. Fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants wrapped with acellular dermis. Thakker MM; Fay AM; Pieroth L; Rubin PA Ophthalmic Plast Reconstr Surg; 2004 Sep; 20(5):368-73. PubMed ID: 15377904 [TBL] [Abstract][Full Text] [Related]
12. Effect of sucralfate and basic fibroblast growth factor on fibrovascular ingrowth into hydroxyapatite and porous polyethylene alloplastic implants using a novel rabbit model. Rubin PA; Nicaeus TE; Warner MA; Remulla HD Ophthalmic Plast Reconstr Surg; 1997 Mar; 13(1):8-17. PubMed ID: 9076777 [TBL] [Abstract][Full Text] [Related]
13. Effect of basic fibroblast growth factor on fibrovascular ingrowth into porous polyethylene anophthalmic socket implants. Park WC; Han SK; Kim NJ; Chung TY; Khwarg SI Korean J Ophthalmol; 2005 Mar; 19(1):1-8. PubMed ID: 15929480 [TBL] [Abstract][Full Text] [Related]
14. Comparison of experimental porous silicone implants and porous silicone implants. Son J; Kim CS; Yang J Graefes Arch Clin Exp Ophthalmol; 2012 Jun; 250(6):879-85. PubMed ID: 22202952 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the exposure rate of wrapped hydroxyapatite (Bio-Eye) versus unwrapped porous polyethylene (Medpor) orbital implants in enucleated patients. Tabatabaee Z; Mazloumi M; Rajabi MT; Khalilzadeh O; Kassaee A; Moghimi S; Eftekhar H; Goldberg RA Ophthalmic Plast Reconstr Surg; 2011; 27(2):114-8. PubMed ID: 20829725 [TBL] [Abstract][Full Text] [Related]
16. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model. Jordan DR; Brownstein S; Dorey M; Yuen VH; Gilberg S Ophthalmic Plast Reconstr Surg; 2004 Mar; 20(2):136-43. PubMed ID: 15083083 [TBL] [Abstract][Full Text] [Related]
18. Fibrovascularization of intraorbital hydroxyapatite-coated alumina sphere in rabbits. Chung WS; Song SJ; Lee SH; Kim EA Korean J Ophthalmol; 2005 Mar; 19(1):9-17. PubMed ID: 15929481 [TBL] [Abstract][Full Text] [Related]
19. Clinical and histopathologic review of 18 explanted porous polyethylene orbital implants. Chuo JY; Dolman PJ; Ng TL; Buffam FV; White VA Ophthalmology; 2009 Feb; 116(2):349-54. PubMed ID: 19091412 [TBL] [Abstract][Full Text] [Related]
20. Bovine pericardium versus homologous sclera as wrapping materials for hydroxyapatite ocular implants: an animal study. DeBacker CM; Dutton JJ; Proia AD; Holck DE; Stone T Ophthalmic Plast Reconstr Surg; 1999 Sep; 15(5):312-6. PubMed ID: 10511210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]