These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11021541)

  • 1. A method for including protein flexibility in protein-ligand docking: improving tools for database mining and virtual screening.
    Broughton HB
    J Mol Graph Model; 2000 Jun; 18(3):247-57, 302-4. PubMed ID: 11021541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T; Baber JC; Feher M
    J Chem Inf Model; 2006; 46(6):2423-31. PubMed ID: 17125184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FLOG: a system to select 'quasi-flexible' ligands complementary to a receptor of known three-dimensional structure.
    Miller MD; Kearsley SK; Underwood DJ; Sheridan RP
    J Comput Aided Mol Des; 1994 Apr; 8(2):153-74. PubMed ID: 8064332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY; Itai A
    J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining ethnopharmacology and virtual screening for lead structure discovery: COX-inhibitors as application example.
    Rollinger JM; Haupt S; Stuppner H; Langer T
    J Chem Inf Comput Sci; 2004; 44(2):480-8. PubMed ID: 15032527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy pharmacophore models from molecular alignments for correlation-vector-based virtual screening.
    Renner S; Schneider G
    J Med Chem; 2004 Sep; 47(19):4653-64. PubMed ID: 15341481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based virtual screening protocols.
    Good A
    Curr Opin Drug Discov Devel; 2001 May; 4(3):301-7. PubMed ID: 11560062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considerations in compound database preparation--"hidden" impact on virtual screening results.
    Knox AJ; Meegan MJ; Carta G; Lloyd DG
    J Chem Inf Model; 2005; 45(6):1908-19. PubMed ID: 16309298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.
    Pérez GM; Salomón LA; Montero-Cabrera LA; de la Vega JM; Mascini M
    Mol Divers; 2016 May; 20(2):421-38. PubMed ID: 26553204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening.
    Huang N; Kalyanaraman C; Irwin JJ; Jacobson MP
    J Chem Inf Model; 2006; 46(1):243-53. PubMed ID: 16426060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards improving compound selection in structure-based virtual screening.
    Waszkowycz B
    Drug Discov Today; 2008 Mar; 13(5-6):219-26. PubMed ID: 18342797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel technologies for virtual screening.
    Lengauer T; Lemmen C; Rarey M; Zimmermann M
    Drug Discov Today; 2004 Jan; 9(1):27-34. PubMed ID: 14761803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors.
    Park H; Li M; Choi J; Cho H; Ham SW
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-target interaction-based weighting of substructures for virtual screening.
    Crisman TJ; Sisay MT; Bajorath J
    J Chem Inf Model; 2008 Oct; 48(10):1955-64. PubMed ID: 18821751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pseudo-ligand approach to virtual screening.
    Schüller A; Fechner U; Renner S; Franke L; Weber L; Schneider G
    Comb Chem High Throughput Screen; 2006 Jun; 9(5):359-64. PubMed ID: 16787149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone.
    Khan T; Ahmad R; Azad I; Raza S; Joshi S; Khan AR
    Comput Biol Chem; 2018 Aug; 75():178-195. PubMed ID: 29883916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.
    Floriano WB; Vaidehi N; Zamanakos G; Goddard WA
    J Med Chem; 2004 Jan; 47(1):56-71. PubMed ID: 14695820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.