These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 11021660)

  • 1. Density functional geometry optimization and energy calculations of calcium(II)-triphosphate complexes. Polyphosphates as possible dissolving agents for calcium pyrophosphate dihydrate crystals in chondrocalcinosis disease.
    Cini R; Chindamo D; Catenaccio M; Lorenzini S; Marcolongo R
    J Biomol Struct Dyn; 2000 Aug; 18(1):155-68. PubMed ID: 11021660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution of calcium pyrophosphate crystals by polyphosphates: an in vitro and ex vivo study.
    Cini R; Chindamo D; Catenaccio M; Lorenzini S; Selvi E; Nerucci F; Picchi MP; Berti G; Marcolongo R
    Ann Rheum Dis; 2001 Oct; 60(10):962-7. PubMed ID: 11557654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density.
    Varadwaj PR; Marques HM
    Phys Chem Chem Phys; 2010 Mar; 12(9):2126-38. PubMed ID: 20165761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrous [Fe++] but not ferric [Fe] ions inhibit de novo formation of calcium pyrophosphate dihydrate crystals: possible relationships to chondrocalcinosis and hemochromatosis.
    Cheng PT; Pritzker KP
    J Rheumatol; 1988 Feb; 15(2):321-4. PubMed ID: 2834554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amide oxygen donor. Metal ion coordinating properties of the ligand nitrilotriacetamide. A thermodynamic and crystallographic study.
    Clapp LA; Siddons CJ; VanDerveer DG; Reibenspies JH; Jones SB; Hancock RD
    Dalton Trans; 2006 Apr; (16):2001-7. PubMed ID: 16609771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do penta- and decaphospha analogues of lithocene anion and beryllocene exist? Analysis of stability, structure, and bonding by hybrid density functional study.
    Malar EJ
    Inorg Chem; 2003 Jun; 42(12):3873-83. PubMed ID: 12793825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions.
    Cheng PT; Pritzker KP
    J Rheumatol; 1983 Oct; 10(5):769-77. PubMed ID: 6315937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT-UX3LYP studies on the coordination chemistry of Ni2+. Part 1: Six coordinate [Ni(NH3)n(H2O)(6-n)]2+ complexes.
    Varadwaj PR; Cukrowski I; Marques HM
    J Phys Chem A; 2008 Oct; 112(42):10657-66. PubMed ID: 18823109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete, solvent-free alkaline-earth metal cations: metal···fluorine interactions and ROP catalytic activity.
    Sarazin Y; Liu B; Roisnel T; Maron L; Carpentier JF
    J Am Chem Soc; 2011 Jun; 133(23):9069-87. PubMed ID: 21545119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.
    Ferreirós-Martínez R; Esteban-Gómez D; Tóth É; de Blas A; Platas-Iglesias C; Rodríguez-Blas T
    Inorg Chem; 2011 Apr; 50(8):3772-84. PubMed ID: 21413756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrophosphate-mediated magnetic interactions in Cu(II) coordination complexes.
    Marino N; Ikotun OF; Julve M; Lloret F; Cano J; Doyle RP
    Inorg Chem; 2011 Jan; 50(1):378-89. PubMed ID: 21114311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands.
    Ferreirós-Martínez R; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T
    Dalton Trans; 2008 Nov; (42):5754-65. PubMed ID: 18941663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eight-coordinate Zn(II), Cd(II), and Pb(II) complexes based on a 1,7-diaza-12-crown-4 platform endowed with a remarkable selectivity over Ca(II).
    Ferreirós-Martínez R; Esteban-Gómez D; de Blas A; Platas-Iglesias C; Rodríguez-Blas T
    Inorg Chem; 2009 Dec; 48(24):11821-31. PubMed ID: 19911785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal ion complexing properties of the highly preorganized ligand 2,9-bis(hydroxymethyl)-1,10-phenanthroline: a crystallographic and thermodynamic study.
    Gephart RT; Williams NJ; Reibenspies JH; De Sousa AS; Hancock RD
    Inorg Chem; 2008 Nov; 47(22):10342-8. PubMed ID: 18855388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.
    Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R
    Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite.
    Wilson RM; Dowker SE; Elliott JC
    Biomaterials; 2006 Sep; 27(27):4682-92. PubMed ID: 16750850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular orbital study of complexes of zinc(II) with sulphide, thiomethanolate, thiomethanol, dimethylthioether, thiophenolate, formiate, acetate, carbonate, hydrogen carbonate, iminomethane and imidazole. Relationships with structural and catalytic zinc in some metallo-enzymes.
    Cini R
    J Biomol Struct Dyn; 1999 Jun; 16(6):1225-37. PubMed ID: 10447206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomeric effect in "high energy" phosphate bonds. Selective destabilization of the scissile bond and modulation of the exothermicity of hydrolysis.
    Ruben EA; Plumley JA; Chapman MS; Evanseck JD
    J Am Chem Soc; 2008 Mar; 130(11):3349-58. PubMed ID: 18302368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system.
    Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD
    Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.