BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 11022030)

  • 21. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli.
    Iuchi S
    J Biol Chem; 1993 Nov; 268(32):23972-80. PubMed ID: 8226939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain.
    Georgellis D; Kwon O; Lin EC; Wong SM; Akerley BJ
    J Bacteriol; 2001 Dec; 183(24):7206-12. PubMed ID: 11717280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel device of bacterial signal transducers.
    Ishige K; Nagasawa S; Tokishita S; Mizuno T
    EMBO J; 1994 Nov; 13(21):5195-202. PubMed ID: 7957084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The SixA phospho-histidine phosphatase modulates the ArcB phosphorelay signal transduction in Escherichia coli.
    Matsubara M; Mizuno T
    FEBS Lett; 2000 Mar; 470(2):118-24. PubMed ID: 10734219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The UvrY response regulator of the BarA-UvrY two-component system contributes to Yersinia ruckeri infection of rainbow trout (Oncorhynchus mykiss).
    Dahiya I; Stevenson RM
    Arch Microbiol; 2010 Jul; 192(7):541-7. PubMed ID: 20480360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction.
    Peña-Sandoval GR; Georgellis D
    J Bacteriol; 2010 Mar; 192(6):1735-9. PubMed ID: 20097862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY.
    Müller J; Shukla S; Jost KA; Spormann AM
    BMC Microbiol; 2013 May; 13():119. PubMed ID: 23705927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants.
    Tsuzuki M; Ishige K; Mizuno T
    Mol Microbiol; 1995 Dec; 18(5):953-62. PubMed ID: 8825099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2.
    Amemura M; Makino K; Shinagawa H; Nakata A
    J Bacteriol; 1990 Nov; 172(11):6300-7. PubMed ID: 2228961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cpx two-component signal transduction in Escherichia coli: excessive CpxR-P levels underlie CpxA* phenotypes.
    De Wulf P; Lin EC
    J Bacteriol; 2000 Mar; 182(5):1423-6. PubMed ID: 10671468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The physiological stimulus for the BarA sensor kinase.
    Chavez RG; Alvarez AF; Romeo T; Georgellis D
    J Bacteriol; 2010 Apr; 192(7):2009-12. PubMed ID: 20118252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning of a sensory-kinase-encoding gene that belongs to the two-component regulatory family from the cyanobacterium Synechococcus sp. PCC7942.
    Nagaya M; Aiba H; Mizuno T
    Gene; 1993 Sep; 131(1):119-24. PubMed ID: 8370532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation.
    Aiba H; Nagaya M; Mizuno T
    Mol Microbiol; 1993 Apr; 8(1):81-91. PubMed ID: 8497200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli.
    Iuchi S; Lin EC
    J Bacteriol; 1992 Jun; 174(12):3972-80. PubMed ID: 1597416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli.
    Kwon O; Georgellis D; Lin EC
    J Bacteriol; 2000 Jul; 182(13):3858-62. PubMed ID: 10851007
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Schachterle JK; Stewart RM; Schachterle MB; Calder JT; Kang H; Prince JT; Erickson DL
    Front Cell Infect Microbiol; 2018; 8():323. PubMed ID: 30280093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Z nucleotides as an ancient signal for two-component system activation in bacteria.
    Vázquez-Ciros OJ; Alvarez AF; Georgellis D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33530-33539. PubMed ID: 33318202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Routes of phosphoryl group transfer during signal transmission and signal decay in the dimeric sensor histidine kinase ArcB.
    Teran-Melo JL; Peña-Sandoval GR; Silva-Jimenez H; Rodriguez C; Alvarez AF; Georgellis D
    J Biol Chem; 2018 Aug; 293(34):13214-13223. PubMed ID: 29945971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor.
    Sakamoto A; Terui Y; Yamamoto T; Kasahara T; Nakamura M; Tomitori H; Yamamoto K; Ishihama A; Michael AJ; Igarashi K; Kashiwagi K
    Int J Biochem Cell Biol; 2012 Nov; 44(11):1877-86. PubMed ID: 22814172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli.
    Mika F; Hengge R
    Genes Dev; 2005 Nov; 19(22):2770-81. PubMed ID: 16291649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.