BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11022083)

  • 1. Role of phosphatidylinositol 3-kinase in acetylcholine-induced dilatation of rat basilar artery.
    Kitayama J; Kitazono T; Ibayashi S; Wakisaka M; Watanabe Y; Kamouchi M; Nagao T; Fujishima M
    Stroke; 2000 Oct; 31(10):2487-93. PubMed ID: 11022083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of tyrosine kinase in dilator responses of rat basilar artery in vivo.
    Kitazono T; Ibayashi S; Nagao T; Fujii K; Kagiyama T; Fujishima M
    Hypertension; 1998 Mar; 31(3):861-5. PubMed ID: 9495273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Na(+)/H(+) exchanger in dilator responses of rat basilar artery in vivo.
    Kitazono T; Kamouchi M; Ago T; Ooboshi H; Nakamura H; Fujishima M; Ibayashi S
    Brain Res; 2001 Jul; 906(1-2):101-6. PubMed ID: 11430866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Ca(2+)-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo.
    Kitazono T; Ibayashi S; Nagao T; Fujii K; Fujishima M
    Br J Pharmacol; 1997 Jan; 120(1):102-6. PubMed ID: 9117083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of protease-activated receptor-2 (PAR-2) elicits nitric oxide-dependent dilatation of the basilar artery in vivo.
    Sobey CG; Cocks TM
    Stroke; 1998 Jul; 29(7):1439-44. PubMed ID: 9660401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase.
    Paravicini TM; Miller AA; Drummond GR; Sobey CG
    J Cereb Blood Flow Metab; 2006 Jun; 26(6):836-45. PubMed ID: 16222243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG; Faraci FM
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo.
    Santa N; Kitazono T; Ago T; Ooboshi H; Kamouchi M; Wakisaka M; Ibayashi S; Iida M
    Stroke; 2003 May; 34(5):1276-80. PubMed ID: 12677015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic administration of a tyrosine kinase inhibitor restores functional and morphological changes of the basilar artery during chronic hypertension.
    Kitayama J; Kitazono T; Ooboshi H; Ago T; Ohgami T; Fujishima M; Ibayashi S
    J Hypertens; 2002 Nov; 20(11):2205-11. PubMed ID: 12409959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of ATP-induced [Ca(2+)](i) mobilization in rat basilar smooth muscle cells.
    Aoki K; Zubkov AY; Parent AD; Zhang JH
    Stroke; 2000 Jun; 31(6):1377-84; discussion 1384-5. PubMed ID: 10835460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutically relevant concentrations of raloxifene dilate pressurized rat resistance arteries via calcium-dependent endothelial nitric oxide synthase activation.
    Chan YC; Leung FP; Wong WT; Tian XY; Yung LM; Lau CW; Tsang SY; Yao X; Chen ZY; Huang Y
    Arterioscler Thromb Vasc Biol; 2010 May; 30(5):992-9. PubMed ID: 20185791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase ameliorates impaired nitric oxide synthase-dependent dilatation of the basilar artery during chronic alcohol consumption.
    Sun H; Mayhan WG
    Brain Res; 2001 Feb; 891(1-2):116-22. PubMed ID: 11164814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus.
    Mayhan WG
    Brain Res; 1997 Jun; 760(1-2):204-9. PubMed ID: 9237536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylinositol 3-kinase may mediate isoproterenol-induced vascular relaxation in part through nitric oxide production.
    Isenović E; Walsh MF; Muniyappa R; Bard M; Diglio CA; Sowers JR
    Metabolism; 2002 Mar; 51(3):380-6. PubMed ID: 11887178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of exercise on dilatation of the basilar artery during diabetes mellitus.
    Mayhan WG; Sun H; Mayhan JF; Patel KP
    J Appl Physiol (1985); 2004 May; 96(5):1730-7. PubMed ID: 14729730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of diabetes mellitus on flow-mediated and endothelium-dependent dilatation of the rat basilar artery.
    Fujii K; Heistad DD; Faraci FM
    Stroke; 1992 Oct; 23(10):1494-8. PubMed ID: 1412587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low [Mg(2+)](o) induces contraction and [Ca(2+)](i) rises in cerebral arteries: roles of ca(2+), PKC, and PI3.
    Yang ZW; Wang J; Zheng T; Altura BT; Altura BM
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2898-907. PubMed ID: 11087246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin reverses impaired acetylcholine-induced dilatation of the rat basilar artery during diabetes mellitus.
    Mayhan WG; Trauernicht AK; Irvine SD
    Brain Res; 2001 Mar; 893(1-2):195-201. PubMed ID: 11223007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway.
    Vecchione C; Maffei A; Colella S; Aretini A; Poulet R; Frati G; Gentile MT; Fratta L; Trimarco V; Trimarco B; Lembo G
    Diabetes; 2002 Jan; 51(1):168-73. PubMed ID: 11756337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.