BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1102305)

  • 1. The use of primed synthesis by DNA polymerase I to study an intercistronic sequence of phiX-174 DNA.
    Donelson JE; Barrell BG; Weith HL
    Eur J Biochem; 1975 Oct; 58(2):383-95. PubMed ID: 1102305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA.
    Sanger F; Donelson JE; Coulson AR; Kössel H; Fischer D
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1209-13. PubMed ID: 4577794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T4 DNA polymerase has a lower apparent Km for deoxynucleoside triphosphates complementary rather than noncomplementary to the template.
    Gillin FD; Nossal NG
    Biochem Biophys Res Commun; 1975 May; 64(2):457-64. PubMed ID: 1170851
    [No Abstract]   [Full Text] [Related]  

  • 4. Nucleotide sequence analysis of deoxyribonucleic acid. XIV. Conditions for the incorporation of ribonucleotides and deoxyribonucleotides into single-stranded areas of long double-stranded deoxyribonucleic acids.
    Hamilton RT; Wu R
    J Biol Chem; 1974 Apr; 249(8):2466-72. PubMed ID: 4595652
    [No Abstract]   [Full Text] [Related]  

  • 5. Low molecular weight DNA polymerase of rat ascites hepatoma cells.
    Tsuruo T; Hirayama K; Kawaguchi M; Sato H; Ukita T
    Biochim Biophys Acta; 1974 Oct; 366(3):270-8. PubMed ID: 4371827
    [No Abstract]   [Full Text] [Related]  

  • 6. Elucidation of RNA initiation (DNA promoter?) sequences in T4 DNA transcription using Escherichia coli RNA polymerase and dinucleoside monophosphates.
    Niyogi SK; Hoffman DJ
    Basic Life Sci; 1974; 3():81-92. PubMed ID: 4595845
    [No Abstract]   [Full Text] [Related]  

  • 7. The 3'-terminal nucleotide sequences of T7 DNA.
    Englund PT
    J Mol Biol; 1972 May; 66(2):209-24. PubMed ID: 5038449
    [No Abstract]   [Full Text] [Related]  

  • 8. Involvement of two protein factors and ATP in in vitro DNA synthesis catalyzed by DNA polymerase 3 of Escherichia coli.
    Hurwitz J; Wickner S
    Proc Natl Acad Sci U S A; 1974 Jan; 71(1):6-10. PubMed ID: 4589895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of deoxyribonucleic acid polymerase in determining mutation rates. Characterization of the defect in the T4 deoxyribonucleic acid polymerase caused by the ts L88 mutation.
    Hershfield MS
    J Biol Chem; 1973 Feb; 248(4):1417-23. PubMed ID: 4568816
    [No Abstract]   [Full Text] [Related]  

  • 10. Nucleotide sequencing of DNA: preliminary characterization of the products of specific cleavages at guanine, cytosine, or adenine residues (bacteriophage M13-ribosubstitution-DNA polymerase I-electrophoresis-two-dimensional fingerprinting).
    Salser W; Fry K; Brunk C; Poon R
    Proc Natl Acad Sci U S A; 1972 Jan; 69(1):238-42. PubMed ID: 4500550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessibility of DNA in chromatin to DNA polymerase and RNA polymerase.
    Silverman B; Mirsky AE
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1326-30. PubMed ID: 4576015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA synthesis startpoints in bacteriophage lambda: are the promoter and operator transcribed?
    Blattner FR; Dahlberg JE
    Nat New Biol; 1972 Jun; 237(77):227-32. PubMed ID: 4556643
    [No Abstract]   [Full Text] [Related]  

  • 13. On the mechanism of oligonucleotide-primed DNA synthesis.
    Oertel W; Schaller H
    Eur J Biochem; 1973 May; 35(1):106-13. PubMed ID: 4576574
    [No Abstract]   [Full Text] [Related]  

  • 14. Biochemistry of deoxyribonucleic acid-defective amber mutants of bacteriophage T4. 3. Nucleotide pools.
    Mathews CK
    J Biol Chem; 1972 Nov; 247(22):7430-8. PubMed ID: 4565086
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break.
    Kelly RB; Cozzarelli NR; Deutscher MP; Lehman IR; Kornberg A
    J Biol Chem; 1970 Jan; 245(1):39-45. PubMed ID: 4904090
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for allosterism in in vitro DNA synthesis on RNA templates.
    Cavalieri LF; Modak MJ; Marcus SL
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):858-62. PubMed ID: 4132534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence analysis of DNA. IV. Complete nucleotide sequence of the left-hand cohesive end of coliphage 186 DNA.
    Padmanabhan R; Wu R
    J Mol Biol; 1972 Apr; 65(3):447-67. PubMed ID: 4554112
    [No Abstract]   [Full Text] [Related]  

  • 18. DNA nucleotide sequence restricted by the RI endonuclease.
    Hedgpeth J; Goodman HM; Boyer HW
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3448-52. PubMed ID: 4343974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of DNA complementary to AMV RNA using E. coli polymerase I.
    Modak MJ; Marcus SL; Cavalieri LF
    Biochem Biophys Res Commun; 1974 Jan; 56(1):247-55. PubMed ID: 4362942
    [No Abstract]   [Full Text] [Related]  

  • 20. Determination of a nucleotide sequence in bacteriophage f1 DNA by primed synthesis with DNA polymerase.
    Sanger F; Donelson JE; Coulson AR; Kössel H; Fischer D
    J Mol Biol; 1974 Dec; 90(2):315-33. PubMed ID: 4616099
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.