These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Aguirre E; Cadenas S Biochim Biophys Acta; 2010 Oct; 1797(10):1716-26. PubMed ID: 20599679 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial proton conductance in skeletal muscle of a cold-exposed marsupial, Antechinus flavipes, is unlikely to be involved in adaptive nonshivering thermogenesis but displays increased sensitivity toward carbon-centered radicals. Jastroch M; Withers KW; Stoehr S; Klingenspor M Physiol Biochem Zool; 2009; 82(5):447-54. PubMed ID: 19614545 [TBL] [Abstract][Full Text] [Related]
4. Cold exposure differently influences mitochondrial energy efficiency in rat liver and skeletal muscle. Mollica MP; Lionetti L; Crescenzo R; Tasso R; Barletta A; Liverini G; Iossa S FEBS Lett; 2005 Mar; 579(9):1978-82. PubMed ID: 15792806 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of the inhibitory effects of purine nucleotides and carboxyatractylate on the uncoupling protein-3 and adenine nucleotide translocase. Komelina NP; Amerkhanov ZG Acta Biochim Pol; 2010; 57(4):413-9. PubMed ID: 21152446 [TBL] [Abstract][Full Text] [Related]
7. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. Talbot DA; Duchamp C; Rey B; Hanuise N; Rouanet JL; Sibille B; Brand MD J Physiol; 2004 Jul; 558(Pt 1):123-35. PubMed ID: 15146050 [TBL] [Abstract][Full Text] [Related]
8. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice. Bevilacqua L; Seifert EL; Estey C; Gerrits MF; Harper ME Biochim Biophys Acta; 2010 Aug; 1797(8):1389-97. PubMed ID: 20206124 [TBL] [Abstract][Full Text] [Related]
9. Adenine nucleotide translocase mediates the K(ATP)-channel-openers-induced proton and potassium flux to the mitochondrial matrix. Kopustinskiene DM; Toleikis A; Saris NE J Bioenerg Biomembr; 2003 Apr; 35(2):141-8. PubMed ID: 12887012 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Parker N; Vidal-Puig A; Brand MD Biosci Rep; 2008 Apr; 28(2):83-8. PubMed ID: 18384278 [TBL] [Abstract][Full Text] [Related]
11. [The role of the adenine nucleotide carrier in regulating energy and ion permeability of rat liver mitochondria upon cold exposure]. Shabalina IG; Kolpakov AR; Solov'ev VN; Panov AV; Panin LE Biokhimiia; 1995 Mar; 60(3):432-40. PubMed ID: 7734616 [TBL] [Abstract][Full Text] [Related]
12. The molecular basis by which dietary restricted feeding reduces mitochondrial reactive oxygen species generation. Ash CE; Merry BJ Mech Ageing Dev; 2011; 132(1-2):43-54. PubMed ID: 21172374 [TBL] [Abstract][Full Text] [Related]
13. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. Trzcionka M; Withers KW; Klingenspor M; Jastroch M J Exp Biol; 2008 Jun; 211(Pt 12):1911-8. PubMed ID: 18515721 [TBL] [Abstract][Full Text] [Related]
14. Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone. de Lange P; Lanni A; Beneduce L; Moreno M; Lombardi A; Silvestri E; Goglia F Endocrinology; 2001 Aug; 142(8):3414-20. PubMed ID: 11459785 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide effects on liver and muscle mitochondrial non-phosphorylating respiration and membrane potential. Jekabsons MB; Horwitz BA Biochim Biophys Acta; 2001 Jan; 1503(3):314-28. PubMed ID: 11115643 [TBL] [Abstract][Full Text] [Related]
16. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Brand MD; Pakay JL; Ocloo A; Kokoszka J; Wallace DC; Brookes PS; Cornwall EJ Biochem J; 2005 Dec; 392(Pt 2):353-62. PubMed ID: 16076285 [TBL] [Abstract][Full Text] [Related]
17. [Inhibitors of the ADP/ATP antiporter induce two Ca2+-dependent uncoupling systems in rat liver mitochondria]. Mikhaĭlova LM; Kushnareva IuE; Andreev AIu Biokhimiia; 1996 Jul; 61(7):1270-8. PubMed ID: 9035739 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial uncoupling caused by a wide variety of protonophores is differently sensitive to carboxyatractyloside in rat heart and liver mitochondria. Khailova LS; Kirsanov RS; Rokitskaya TI; Krasnov VS; Korshunova GA; Kotova EA; Antonenko YN Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149506. PubMed ID: 39168228 [TBL] [Abstract][Full Text] [Related]
19. Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation. Roussel D; Chainier F; Rouanet J; Barré H FEBS Lett; 2000 Jul; 477(1-2):141-4. PubMed ID: 10899325 [TBL] [Abstract][Full Text] [Related]
20. Skeletal muscle mitochondrial free-fatty-acid content and membrane potential sensitivity in different thyroid states: involvement of uncoupling protein-3 and adenine nucleotide translocase. Lombardi A; Silvestri E; Moreno M; De Lange P; Farina P; Goglia F; Lanni A FEBS Lett; 2002 Dec; 532(1-2):12-6. PubMed ID: 12459454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]