These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11023911)

  • 1. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study.
    Uematsu N; Matsuzaki K
    Biophys J; 2000 Oct; 79(4):2075-83. PubMed ID: 11023911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor.
    Kobayashi S; Takeshima K; Park CB; Kim SC; Matsuzaki K
    Biochemistry; 2000 Jul; 39(29):8648-54. PubMed ID: 10913273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of potent antimicrobial peptides.
    Frecer V; Ho B; Ding JL
    Antimicrob Agents Chemother; 2004 Sep; 48(9):3349-57. PubMed ID: 15328096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides.
    Mai XT; Huang J; Tan J; Huang Y; Chen Y
    J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity.
    Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A
    Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides.
    Wieprecht T; Dathe M; Epand RM; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 Oct; 36(42):12869-80. PubMed ID: 9335545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues.
    Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY
    Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes.
    Mishra VK; Palgunachari MN
    Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane translocation mechanism of the antimicrobial peptide buforin 2.
    Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K
    Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa.
    Matsuzaki K; Mitani Y; Akada KY; Murase O; Yoneyama S; Zasloff M; Miyajima K
    Biochemistry; 1998 Oct; 37(43):15144-53. PubMed ID: 9790678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane activity of two short Trp-rich amphipathic peptides.
    Bozelli JC; Yune J; Dang X; Narayana JL; Wang G; Epand RM
    Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183280. PubMed ID: 32220553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism.
    Yamamoto N; Tamura A
    Peptides; 2010 May; 31(5):794-805. PubMed ID: 20109510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials.
    Jin Y; Hammer J; Pate M; Zhang Y; Zhu F; Zmuda E; Blazyk J
    Antimicrob Agents Chemother; 2005 Dec; 49(12):4957-64. PubMed ID: 16304158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843.
    Thennarasu S; Lee DK; Tan A; Prasad Kari U; Ramamoorthy A
    Biochim Biophys Acta; 2005 Jun; 1711(1):49-58. PubMed ID: 15904663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units.
    Ma QQ; Dong N; Shan AS; Lv YF; Li YZ; Chen ZH; Cheng BJ; Li ZY
    Amino Acids; 2012 Dec; 43(6):2527-36. PubMed ID: 22699557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.