These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11024040)

  • 21. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae.
    Proft M; Kötter P; Hedges D; Bojunga N; Entian KD
    EMBO J; 1995 Dec; 14(24):6116-26. PubMed ID: 8557031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8.
    Young ET; Dombek KM; Tachibana C; Ideker T
    J Biol Chem; 2003 Jul; 278(28):26146-58. PubMed ID: 12676948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive and carbon source-responsive promoter elements are involved in the regulated expression of the Saccharomyces cerevisiae malate synthase gene MLS1.
    Caspary F; Hartig A; Schüller HJ
    Mol Gen Genet; 1997 Aug; 255(6):619-27. PubMed ID: 9323366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.
    Han BK; Emr SD
    J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae.
    Walther K; Schüller HJ
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2037-2044. PubMed ID: 11495982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae.
    Thepnok P; Ratanakhanokchai K; Soontorngun N
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1276-82. PubMed ID: 24998441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae.
    Tangsombatvichit P; Semkiv MV; Sibirny AA; Jensen LT; Ratanakhanokchai K; Soontorngun N
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three target genes for the transcriptional activator Cat8p of Kluyveromyces lactis: acetyl coenzyme A synthetase genes KlACS1 and KlACS2 and lactate permease gene KlJEN1.
    Lodi T; Saliola M; Donnini C; Goffrini P
    J Bacteriol; 2001 Sep; 183(18):5257-61. PubMed ID: 11514507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae.
    Roth S; Kumme J; Schüller HJ
    Curr Genet; 2004 Mar; 45(3):121-8. PubMed ID: 14685767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional regulation of nonfermentable carbon utilization in budding yeast.
    Turcotte B; Liang XB; Robert F; Soontorngun N
    FEMS Yeast Res; 2010 Feb; 10(1):2-13. PubMed ID: 19686338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor.
    Gasmi N; Jacques PE; Klimova N; Guo X; Ricciardi A; Robert F; Turcotte B
    Genetics; 2014 Oct; 198(2):547-60. PubMed ID: 25123508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth.
    Galello F; Pautasso C; Reca S; Cañonero L; Portela P; Moreno S; Rossi S
    Yeast; 2017 Dec; 34(12):495-508. PubMed ID: 28812308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6.
    Kratzer S; Schüller HJ
    Mol Microbiol; 1997 Nov; 26(4):631-41. PubMed ID: 9427394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations.
    Yin Z; Hatton L; Brown AJ
    Mol Microbiol; 2000 Feb; 35(3):553-65. PubMed ID: 10672178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.
    Nishizawa M; Katou Y; Shirahige K; Toh-e A
    Yeast; 2004 Aug; 21(11):903-18. PubMed ID: 15334555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Lodi T; Goffrini P; Ferrero I; Donnini C
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2201-9. PubMed ID: 7496532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.
    DeRisi J; van den Hazel B; Marc P; Balzi E; Brown P; Jacq C; Goffeau A
    FEBS Lett; 2000 Mar; 470(2):156-60. PubMed ID: 10734226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest.
    Russell M; Bradshaw-Rouse J; Markwardt D; Heideman W
    Mol Biol Cell; 1993 Jul; 4(7):757-65. PubMed ID: 8400461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.