These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11025331)

  • 1. Human frequency-following response: representation of tonal sweeps.
    Krishnan A; Parkinson J
    Audiol Neurootol; 2000; 5(6):312-21. PubMed ID: 11025331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human frequency-following responses to two-tone approximations of steady-state vowels.
    Krishnan A
    Audiol Neurootol; 1999; 4(2):95-103. PubMed ID: 9892760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human frequency-following responses: representation of steady-state synthetic vowels.
    Krishnan A
    Hear Res; 2002 Apr; 166(1-2):192-201. PubMed ID: 12062771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human frequency-following responses: representation of second formant transitions in normal-hearing and hearing-impaired listeners.
    Plyler PN; Ananthanarayan AK
    J Am Acad Audiol; 2001; 12(10):523-33. PubMed ID: 11791939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging degrades the neural encoding of simple and complex sounds in the human brainstem.
    Clinard CG; Tremblay KL
    J Am Acad Audiol; 2013; 24(7):590-9; quiz 643-4. PubMed ID: 24047946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits.
    Bidelman G; Powers L
    Int J Audiol; 2018 Sep; 57(9):665-672. PubMed ID: 29764252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural representation of dynamic frequency is degraded in older adults.
    Clinard CG; Cotter CM
    Hear Res; 2015 May; 323():91-8. PubMed ID: 25724819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human frequency-following response: representation of pitch contours in Chinese tones.
    Krishnan A; Xu Y; Gandour JT; Cariani PA
    Hear Res; 2004 Mar; 189(1-2):1-12. PubMed ID: 14987747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exponential Modeling of Frequency-Following Responses in American Neonates and Adults.
    Jeng FC; Nance B; Montgomery-Reagan K; Lin CD
    J Am Acad Audiol; 2018 Feb; 29(2):125-134. PubMed ID: 29401060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encoding of pitch in the human brainstem is sensitive to language experience.
    Krishnan A; Xu Y; Gandour J; Cariani P
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):161-8. PubMed ID: 15935624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.
    Digeser FM; Wohlberedt T; Hoppe U
    Ear Hear; 2009 Dec; 30(6):704-12. PubMed ID: 19672195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency following responses to tone glides: Effects of frequency extent, direction, and electrode montage.
    Billings CJ; Bologna WJ; Muralimanohar RK; Madsen BM; Molis MR
    Hear Res; 2019 Apr; 375():25-33. PubMed ID: 30772133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related reduction in frequency-following responses as a potential marker of cochlear neural degeneration.
    Märcher-Rørsted J; Encina-Llamas G; Dau T; Liberman MC; Wu PZ; Hjortkjær J
    Hear Res; 2022 Feb; 414():108411. PubMed ID: 34929535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human frequency-following response to speech-like sounds: correlates of off-frequency masking.
    Krishnan A; Agrawal S
    Audiol Neurootol; 2010; 15(4):221-8. PubMed ID: 19893303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficient neural encoding of speech sounds in term neonates born after fetal growth restriction.
    Ribas-Prats T; Arenillas-Alcón S; Lip-Sosa DL; Costa-Faidella J; Mazarico E; Gómez-Roig MD; Escera C
    Dev Sci; 2022 May; 25(3):e13189. PubMed ID: 34758093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the neural discrimination of acoustic characteristics of speech sounds in normal-hearing individuals through Frequency-following Response (FFR).
    Rocha-Muniz CN; Schochat E
    Codas; 2021; 33(1):e20180324. PubMed ID: 33909840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Envelope and spectral frequency-following responses to vowel sounds.
    Aiken SJ; Picton TW
    Hear Res; 2008 Nov; 245(1-2):35-47. PubMed ID: 18765275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic neural processing of sound in adults is influenced by bilingual experience.
    Skoe E; Burakiewicz E; Figueiredo M; Hardin M
    Neuroscience; 2017 May; 349():278-290. PubMed ID: 28259798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.