These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 1102536)

  • 1. Enzymatic lesions in methionine mutants of Aspergillus nidulans: role and regulation of an alternative pathway for cysteine and methionine synthesis.
    Paszewski A; Grabski J
    J Bacteriol; 1975 Nov; 124(2):893-904. PubMed ID: 1102536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations affecting the sulphur assimilation pathway in Aspergillus nidulans: their effect on sulphur amino acid metabolism.
    Paszewski A; Prazmo W; Nadolska J; Regulski M
    J Gen Microbiol; 1984 May; 130(5):1113-21. PubMed ID: 6381643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of transsulfuration in synthesis of L-homocysteine in an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Yamagata S; Ichioka K; Goto K; Mizuno Y; Iwama T
    J Bacteriol; 2001 Mar; 183(6):2086-92. PubMed ID: 11222609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Aspergillus nidulans mutant lacking cystathionine -synthase: identity of L-serine sulfhydrylase with cystathionine -synthase and its distinctness from O-acetyl-L-serine sulfhydrylase.
    Pieniazek N; Stepień PP; Paszewski A
    Biochim Biophys Acta; 1973 Jan; 297(1):37-47. PubMed ID: 4571410
    [No Abstract]   [Full Text] [Related]  

  • 5. Homolanthionine in fungi: accumulation in the methionine-requiring mutants of Aspergillus nidulans.
    Paszewski A; Grabski J
    Acta Biochim Pol; 1975; 22(3):263-8. PubMed ID: 1101592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on beta-cystathionase and omicron-acetylhomoserine sulfhydrylase as the enzymes of alternative methionine biosynthetic pathways in Aspergillus nidulans.
    Paszewski A; Grabski J
    Acta Biochim Pol; 1973; 20(2):159-68. PubMed ID: 4577164
    [No Abstract]   [Full Text] [Related]  

  • 7. Cysteine biosynthesis in Aspergillus nidulans.
    Steień PP; Pieniqzek NJ; Bal J; Morzycka E
    Acta Microbiol Pol A; 1975; 7(4):201-10. PubMed ID: 1108603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of 5'-methylthioadenosine in Aspergillus nidulans. An alternative pathway for methionine synthesis via utilization of the nucleoside methylthio group.
    Guranowski A; Paszewski A
    Biochim Biophys Acta; 1982 Aug; 717(2):289-94. PubMed ID: 7052140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrelated regulation of sulphur-containing amino-acid biosynthetic enzymes and folate-metabolizing enzymes in Aspergillus nidulans.
    Nadolska-Lutyk J; Balinska M; Paszewski A
    Eur J Biochem; 1989 Apr; 181(1):231-5. PubMed ID: 2653822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspergillus nidulans genes encoding reverse transsulfuration enzymes belong to homocysteine regulon.
    Sieńko M; Natorff R; Owczarek S; Olewiecki I; Paszewski A
    Curr Genet; 2009 Oct; 55(5):561-70. PubMed ID: 19685245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of regulatory mutations of sulphur metabolism on the levels of cysteine- and homocysteine-synthesizing enzymes in Neurospora crassa.
    Piotrowska M; Kruszewska A; Paszewski A
    Acta Biochim Pol; 1980; 27(3-4):395-403. PubMed ID: 6455895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts.
    Ravanel S; Droux M; Douce R
    Arch Biochem Biophys; 1995 Jan; 316(1):572-84. PubMed ID: 7840669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine and homocysteine synthesis in Saccharomycopsis lipolytica; identification and characterization of two cysteine synthases.
    Morzycka E; Paszewski A
    Acta Biochim Pol; 1982; 29(1-2):81-93. PubMed ID: 7180327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homocysteine accumulation causes a defect in purine biosynthesis: further characterization of Schizosaccharomyces pombe methionine auxotrophs.
    Fujita Y; Ukena E; Iefuji H; Giga-Hama Y; Takegawa K
    Microbiology (Reading); 2006 Feb; 152(Pt 2):397-404. PubMed ID: 16436428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase.
    Ozaki H; Shiio I
    J Biochem; 1982 Apr; 91(4):1163-71. PubMed ID: 7096282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. At least four regulatory genes control sulphur metabolite repression in Aspergillus nidulans.
    Natorff R; Balińska M; Paszewski A
    Mol Gen Genet; 1993 Apr; 238(1-2):185-92. PubMed ID: 8479426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Role of cysteine and-or homocysteine as regulatory effectors.
    Paszewski A; Grabski J
    Mol Gen Genet; 1974; 132(4):307-20. PubMed ID: 4610340
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of new regulatory genes controlling synthesis of folate-dependent enzymes in Aspergillus nidulans.
    Lewandowska I; Balińska M; Paszewski A
    Microbiology (Reading); 1997 Oct; 143 ( Pt 10)():3273-3278. PubMed ID: 9462964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystationine synthesis in yeast: an alternative pathway for homocysteine biosynthesis.
    Savin MA; Flavin M
    J Bacteriol; 1972 Oct; 112(1):299-303. PubMed ID: 4263404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of assimilative sulfur metabolism in Pseudomonas putida.
    Vermeij P; Kertesz MA
    J Bacteriol; 1999 Sep; 181(18):5833-7. PubMed ID: 10482527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.