These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1102539)

  • 1. On the processive mechanism of Escherichia coli DNA polymerase I.
    Uyemura D; Bambara R; Lehman IR
    J Biol Chem; 1975 Nov; 250(22):8577-84. PubMed ID: 1102539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the processive mechanism of Escherichia coli DNA polymerase I. Delayed initiation of polymerization.
    Bambara RA; Uyemura D; Lehman IR
    J Biol Chem; 1976 Jul; 251(13):4090-4. PubMed ID: 776980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of primed synthesis by DNA polymerase I to study an intercistronic sequence of phiX-174 DNA.
    Donelson JE; Barrell BG; Weith HL
    Eur J Biochem; 1975 Oct; 58(2):383-95. PubMed ID: 1102305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I.
    McClure WR; Jovin TM
    J Biol Chem; 1975 Jun; 250(11):4073-80. PubMed ID: 1092683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of noncomplementary nucleotides at high frequencies by ribodeoxyvirus DNA polymerases and Escherichia coli DNA polymerase I.
    Mizutani S; Temin HM
    Biochemistry; 1976 Apr; 15(7):1510-6. PubMed ID: 769823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA.
    Sanger F; Donelson JE; Coulson AR; Kössel H; Fischer D
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1209-13. PubMed ID: 4577794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of replication to transcription in vitro.
    Karkas JD
    Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2288-91. PubMed ID: 4559600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of T5-induced DNA polymerase. I. Replication of short primer templates.
    Das SK; Fujimura RK
    J Biol Chem; 1977 Dec; 252(23):8700-7. PubMed ID: 336621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processiveness of DNA polymerases. A comparative study using a simple procedure.
    Das SK; Fujimura RK
    J Biol Chem; 1979 Feb; 254(4):1227-32. PubMed ID: 368069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence analysis of deoxyribonucleic acid. VI. Determination of 3'-terminal dnucleotide sequences of several species of duplex deoxyribonucleic acid using Escherichia coli deoxyribonucleic acid polymerase I.
    Donelson JE; Wu R
    J Biol Chem; 1972 Jul; 247(14):4654-60. PubMed ID: 4557849
    [No Abstract]   [Full Text] [Related]  

  • 11. Involvement of two protein factors and ATP in in vitro DNA synthesis catalyzed by DNA polymerase 3 of Escherichia coli.
    Hurwitz J; Wickner S
    Proc Natl Acad Sci U S A; 1974 Jan; 71(1):6-10. PubMed ID: 4589895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elementary steps in the DNA polymerase I reaction pathway.
    Bryant FR; Johnson KA; Benkovic SJ
    Biochemistry; 1983 Jul; 22(15):3537-46. PubMed ID: 6351905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the fidelity of DNA replication. Lack of exodeoxyribonuclease activity and error-correcting function in avian myeloblastosis virus DNA polymerase.
    Battula N; Loeb LA
    J Biol Chem; 1976 Feb; 251(4):982-6. PubMed ID: 55415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of ribonucleic acid by the ribonucleic acid directed deoxyribonucleic acid polymerase of Rous sarcoma virus and deoxyribonucleic acid polymerase I of Escherichia coli.
    Taylor JM; Faras AJ; Varmus HE; Goodman HM; Levinson WE; Bishop JM
    Biochemistry; 1973 Jan; 12(3):460-7. PubMed ID: 4345804
    [No Abstract]   [Full Text] [Related]  

  • 15. Specific hydrolysis of the cohesive ends of bacteriophage lambda DNA by three single strand-specific nucleases.
    Ghangas GS; Wu R
    J Biol Chem; 1975 Jun; 250(12):4601-6. PubMed ID: 1141222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DNA-binding protein induced by bacteriophage T7.
    Reuben RC; Gefter ML
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1846-50. PubMed ID: 4578445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA synthesis in cell-free extracts of a DNA polymerase-defective mutant.
    Kornberg T; Gefter ML
    Biochem Biophys Res Commun; 1970 Sep; 40(6):1348-55. PubMed ID: 4933688
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative ability of RNA and DNA to prime DNA synthesis in vitro: role of sequence, sugar, and structure of template-primer.
    Tamblyn TM; Wells RD
    Biochemistry; 1975 Apr; 14(7):1412-25. PubMed ID: 1092334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequencing techniques.
    Salser WA
    Annu Rev Biochem; 1974; 43(0):923-65. PubMed ID: 4604359
    [No Abstract]   [Full Text] [Related]  

  • 20. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase.
    Sanger F; Coulson AR
    J Mol Biol; 1975 May; 94(3):441-8. PubMed ID: 1100841
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.