BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1102540)

  • 1. Kinetic analysis of Escherichia coli deoxyribonucleic acid polymerase I.
    Travaglini EC; Mildvan AS; Loeb LA
    J Biol Chem; 1975 Nov; 250(22):8647-56. PubMed ID: 1102540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching.
    Huber HE; McCoy JM; Seehra JS; Richardson CC
    J Biol Chem; 1989 Mar; 264(8):4669-78. PubMed ID: 2466838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Papanicolaou C; Lecomte P; Ninio J
    J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human immunodeficiency virus reverse transcriptase. Substrate and inhibitor kinetics with thymidine 5'-triphosphate and 3'-azido-3'-deoxythymidine 5'-triphosphate.
    Reardon JE; Miller WH
    J Biol Chem; 1990 Nov; 265(33):20302-7. PubMed ID: 1700787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of DNA polymerase I of Escherichia coli with DNA-RNA hybrids as templates.
    Karkas JD; Stavrianopoulos JG; Chargaff E
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):398-402. PubMed ID: 4621833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I.
    Vilpo JA; Ridell J
    Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (dA-dT) dependent inactivation of the DNA template properties by interaction with netropsin and distamycin A.
    Wähnert U; Zimmer O; Luck G; Pitra O
    Nucleic Acids Res; 1975 Mar; 2(3):391-404. PubMed ID: 1093141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primer requirement and template specificity of a DNA polymerase of chick embryo.
    Rougeon F; Brun G; da Costa Maia JC; Chapeville F
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1229-33. PubMed ID: 4123933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative ability of RNA and DNA to prime DNA synthesis in vitro: role of sequence, sugar, and structure of template-primer.
    Tamblyn TM; Wells RD
    Biochemistry; 1975 Apr; 14(7):1412-25. PubMed ID: 1092334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket.
    Kaushik N; Pandey VN; Modak MJ
    Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of error discrimination by Escherichia coli DNA polymerase I.
    el-Deiry WS; So AG; Downey KM
    Biochemistry; 1988 Jan; 27(2):546-53. PubMed ID: 3280024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restriction of carcinogen-induced error incorporation during in vitro DNA synthesis.
    Sirover MA; Loeb LA
    Cancer Res; 1976 Feb; 36(2 Pt 1):516-23. PubMed ID: 1260750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avian myeloblastosis virus DNA polymerase. Kinetic studies on the incorporation of noncomplementary nucleotides.
    Battula N; Dube D; Loeb LA
    J Biol Chem; 1975 Nov; 250(21):8404-8. PubMed ID: 172498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of conformations and interactions of substrates and ribonucleotide templates bound to the large fragment of DNA polymerase I.
    Ferrin LJ; Mildvan AS
    Biochemistry; 1986 Sep; 25(18):5131-45. PubMed ID: 3533145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I.
    McClure WR; Jovin TM
    J Biol Chem; 1975 Jun; 250(11):4073-80. PubMed ID: 1092683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of the adenovirus DNA polymerase.
    Field J; Gronostajski RM; Hurwitz J
    J Biol Chem; 1984 Aug; 259(15):9487-95. PubMed ID: 6540263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of HIV reverse transcriptase: enzyme-primer interaction as revealed through studies of a dNTP analogue, 3'-azido-dTTP.
    Kedar PS; Abbotts J; Kovács T; Lesiak K; Torrence P; Wilson SH
    Biochemistry; 1990 Apr; 29(15):3603-11. PubMed ID: 1692732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base-pairing properties of O6-methylguanine in template DNA during in vitro DNA replication.
    Snow ET; Foote RS; Mitra S
    J Biol Chem; 1984 Jul; 259(13):8095-100. PubMed ID: 6376499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of the fidelity of transcription of RNA polymerase I and II following N-hydroxy-2-acetylaminofluorene treatment.
    Glazer RI
    Nucleic Acids Res; 1978 Jul; 5(7):2607-16. PubMed ID: 353743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.