These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11025538)

  • 21. Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology.
    Anand A; Jones TJ
    Curr Top Microbiol Immunol; 2018; 418():489-507. PubMed ID: 29959543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How can we use genomics to improve cereals with rice as a reference genome?
    Xu Y; McCouch SR; Zhang Q
    Plant Mol Biol; 2005 Sep; 59(1):7-26. PubMed ID: 16217598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant science. Surprises inside a green grass genome.
    Bevan M
    Science; 2003 Jun; 300(5625):1514-5. PubMed ID: 12791971
    [No Abstract]   [Full Text] [Related]  

  • 24. MIPS PlantsDB: a database framework for comparative plant genome research.
    Nussbaumer T; Martis MM; Roessner SK; Pfeifer M; Bader KC; Sharma S; Gundlach H; Spannagl M
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D1144-51. PubMed ID: 23203886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current patents and future development underlying marker-assisted breeding in major grain crops.
    Utomo HS; Linscombe SD
    Recent Pat DNA Gene Seq; 2009; 3(1):53-62. PubMed ID: 19149739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Centromeric sites and cereal chromosome evolution.
    Moore G; Roberts M; Aragon-Alcaide L; Foote T
    Chromosoma; 1997 Apr; 105(6):321-3. PubMed ID: 9087373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional cereals for production in new and variable climates.
    Henry RJ; Rangan P; Furtado A
    Curr Opin Plant Biol; 2016 Apr; 30():11-8. PubMed ID: 26828379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SeedStor: A Germplasm Information Management System and Public Database.
    Horler RSP; Turner AS; Fretter P; Ambrose M
    Plant Cell Physiol; 2018 Jan; 59(1):e5. PubMed ID: 29228298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Edible oil crops and their integration with the major cereals in North Shewa and South Welo, Central Highlands of Ethiopia: an ethnobotanical perspective.
    Geleta M; Asfaw Z; Bekele E; Teshome A
    Hereditas; 2002; 137(1):29-40. PubMed ID: 12564630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in cereal genomics and applications in crop breeding.
    Varshney RK; Hoisington DA; Tyagi AK
    Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop.
    DeHaan L; Larson S; López-Marqués RL; Wenkel S; Gao C; Palmgren M
    Trends Plant Sci; 2020 Jun; 25(6):525-537. PubMed ID: 32407693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic Advances in Cereal and Vegetable Crops.
    Agregán R; Echegaray N; López-Pedrouso M; Aadil RM; Hano C; Franco D; Lorenzo JM
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New resistance gene against maize rough dwarf disease identified in cereal crops.
    Nat Plants; 2023 Oct; 9(10):1587-1588. PubMed ID: 37726430
    [No Abstract]   [Full Text] [Related]  

  • 35. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants.
    Gupta PK; Rustgi S; Kumar N
    Genome; 2006 Jun; 49(6):565-71. PubMed ID: 16936836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cereal genomics: ushering in a brave new world.
    Tuberosa R; Gill BS; Quarrie SA
    Plant Mol Biol; 2002; 48(5-6):445-9. PubMed ID: 11999828
    [No Abstract]   [Full Text] [Related]  

  • 37. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GrainGenes, the genome database for small-grain crops.
    Matthews DE; Carollo VL; Lazo GR; Anderson OD
    Nucleic Acids Res; 2003 Jan; 31(1):183-6. PubMed ID: 12519977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives.
    Sarah G; Homa F; Pointet S; Contreras S; Sabot F; Nabholz B; Santoni S; Sauné L; Ardisson M; Chantret N; Sauvage C; Tregear J; Jourda C; Pot D; Vigouroux Y; Chair H; Scarcelli N; Billot C; Yahiaoui N; Bacilieri R; Khadari B; Boccara M; Barnaud A; Péros JP; Labouisse JP; Pham JL; David J; Glémin S; Ruiz M
    Mol Ecol Resour; 2017 May; 17(3):565-580. PubMed ID: 27487989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinformatics: harvesting information for plant and crop science.
    King GJ
    Semin Cell Dev Biol; 2004 Dec; 15(6):721-31. PubMed ID: 15561592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.