BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 11026939)

  • 1. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour.
    Liu Z; Bilston L
    Biorheology; 2000; 37(3):191-201. PubMed ID: 11026939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model.
    Bilston LE; Liu Z; Phan-Thien N
    Biorheology; 2001; 38(4):335-45. PubMed ID: 11673648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency dependence of complex moduli of brain tissue using a fractional Zener model.
    Kohandel M; Sivaloganathan S; Tenti G; Darvish K
    Phys Med Biol; 2005 Jun; 50(12):2799-805. PubMed ID: 15930603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear viscoelastic behavior of subcutaneous adipose tissue.
    Geerligs M; Peters GW; Ackermans PA; Oomens CW; Baaijens FP
    Biorheology; 2008; 45(6):677-88. PubMed ID: 19065014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large deformation shear properties of liver tissue.
    Liu Z; Bilston LE
    Biorheology; 2002; 39(6):735-42. PubMed ID: 12454439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo mechanical characterization of human liver.
    Nava A; Mazza E; Furrer M; Villiger P; Reinhart WH
    Med Image Anal; 2008 Apr; 12(2):203-16. PubMed ID: 18171633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear mechanical properties of the spleen: experiment and analytical modelling.
    Nicolle S; Noguer L; Palierne JF
    J Mech Behav Biomed Mater; 2012 May; 9():130-6. PubMed ID: 22498291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The estimation of elasticity and viscosity of soft tissues in vitro using the data of remote acoustic palpation.
    Girnyk S; Barannik A; Barannik E; Tovstiak V; Marusenko A; Volokhov V
    Ultrasound Med Biol; 2006 Feb; 32(2):211-9. PubMed ID: 16464667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE; Li G
    Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device.
    Valtorta D; Mazza E
    Med Image Anal; 2005 Oct; 9(5):481-90. PubMed ID: 16006169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The applicability of the time/temperature superposition principle to brain tissue.
    Peters GW; Meulman JH; Sauren AA
    Biorheology; 1997; 34(2):127-38. PubMed ID: 9373395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography.
    Klatt D; Friedrich C; Korth Y; Vogt R; Braun J; Sack I
    Biorheology; 2010; 47(2):133-41. PubMed ID: 20683156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
    Nicolle S; Vezin P; Palierne JF
    J Biomech; 2010 Mar; 43(5):927-32. PubMed ID: 19954778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests.
    Koolstra JH; Tanaka E; Van Eijden TM
    J Biomech; 2007; 40(10):2330-4. PubMed ID: 17141788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of viscoelastic models of blood vessel wall.
    Orosz M; Molnárka G; Nádasy G; Raffai G; Kozmann G; Monos E
    Acta Physiol Hung; 1999; 86(3-4):265-71. PubMed ID: 10943658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterising soft tissues under large amplitude oscillatory shear and combined loading.
    Tan K; Cheng S; Jugé L; Bilston LE
    J Biomech; 2013 Apr; 46(6):1060-6. PubMed ID: 23481421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.