BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11027180)

  • 1. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells.
    Guardia MJ; Gambhir A; Europa AF; Ramkrishna D; Hu WS
    Biotechnol Prog; 2000; 16(5):847-53. PubMed ID: 11027180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling steady-state multiplicity in hybridoma cultures: the cybernetic approach.
    Namjoshi AA; Hu WS; Ramkrishna D
    Biotechnol Bioeng; 2003 Jan; 81(1):80-91. PubMed ID: 12432584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energetically structured model of mammalian cell metabolism. 1. Model development and application to steady-state hybridoma cell growth in continuous culture.
    DiMasi D; Swartz RW
    Biotechnol Prog; 1995; 11(6):664-76. PubMed ID: 8541017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants and rate laws of growth and death of hybridoma cells in continuous culture.
    Zeng AP; Deckwer WD; Hu WS
    Biotechnol Bioeng; 1998 Mar; 57(6):642-54. PubMed ID: 10099244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture.
    Omasa T; Furuichi K; Iemura T; Katakura Y; Kishimoto M; Suga K
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):117-25. PubMed ID: 19590901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exacting predictions by cybernetic model confirmed experimentally: steady state multiplicity in the chemostat.
    Kim JI; Song HS; Sunkara SR; Lali A; Ramkrishna D
    Biotechnol Prog; 2012; 28(5):1160-6. PubMed ID: 22736577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cybernetic model for the growth of Saccharomyces cerevisiae on melibiose.
    Gadgil CJ; Bhat PJ; Venkatesh KV
    Biotechnol Prog; 1996; 12(6):744-50. PubMed ID: 8983203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of metabolism in hybridoma cells grown in fed-batch culture by genome-scale modeling.
    Selvarasu S; Wong VV; Karimi IA; Lee DY
    Biotechnol Bioeng; 2009 Apr; 102(5):1494-504. PubMed ID: 19048615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM).
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus.
    Sheikh K; Förster J; Nielsen LK
    Biotechnol Prog; 2005; 21(1):112-21. PubMed ID: 15903248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions.
    Insel G; Celikyilmaz G; Ucisik-Akkaya E; Yesiladali K; Cakar ZP; Tamerler C; Orhon D
    Biotechnol Bioeng; 2007 Jan; 96(1):94-105. PubMed ID: 16937401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating animal cell growth in perfusion mode by multivariable control: simulation studies.
    Sbarciog M; Saraiva I; Vande Wouwer A
    Bioprocess Biosyst Eng; 2013 May; 36(5):517-30. PubMed ID: 22923138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the culture efficiency of hybridoma cells by the use of integrated metabolic control of glucose and glutamine at low levels.
    Li L; Mi L; Feng Q; Liu R; Tang H; Xie L; Yu X; Chen Z
    Biotechnol Appl Biochem; 2005 Aug; 42(Pt 1):73-80. PubMed ID: 15748147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The chemical decomposition of glutamine and its effect on hybridoma cell culture].
    Xin Y; Yang Y; Li Q; Kong J; Cao ZA
    Sheng Wu Gong Cheng Xue Bao; 2001 Jul; 17(4):478-80. PubMed ID: 11702715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles.
    Nilsang S; Nehru V; Plieva FM; Nandakumar KS; Rakshit SK; Holmdahl R; Mattiasson B; Kumar A
    Biotechnol Prog; 2008; 24(5):1122-31. PubMed ID: 19194922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and robustness analysis of hybridoma cell fed-batch cultures using the overflow metabolism model.
    Amribt Z; Dewasme L; Vande Wouwer A; Bogaerts P
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1637-52. PubMed ID: 24519722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control.
    Young JD; Henne KL; Morgan JA; Konopka AE; Ramkrishna D
    Biotechnol Bioeng; 2008 Jun; 100(3):542-59. PubMed ID: 18438875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic regulation in bacterial continuous cultures: II.
    Baloo S; Ramkrishna D
    Biotechnol Bioeng; 1991 Dec; 38(11):1353-63. PubMed ID: 18600737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux analysis of hybridoma continuous culture steady state multiplicity.
    Follstad BD; Balcarcel RR; Stephanopoulos G; Wang DI
    Biotechnol Bioeng; 1999 Jun; 63(6):675-83. PubMed ID: 10397824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.