BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11027209)

  • 1. Mutants of a temperature-sensitive two-P domain potassium channel.
    Kunkel MT; Johnstone DB; Thomas JH; Salkoff L
    J Neurosci; 2000 Oct; 20(20):7517-24. PubMed ID: 11027209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion Behavior Is Affected by the Gα
    Gottschling DC; Döring F; Lüersen K
    Genetics; 2017 May; 206(1):283-297. PubMed ID: 28341653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex Locomotion Behavior Changes Are Induced in Caenorhabditis elegans by the Lack of the Regulatory Leak K+ Channel TWK-7.
    Lüersen K; Gottschling DC; Döring F
    Genetics; 2016 Oct; 204(2):683-701. PubMed ID: 27535928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential modulation of C. elegans motor behavior by NALCN and two-pore domain potassium channels.
    Zhou C; Zhou Q; He X; He Y; Wang X; Zhu X; Zhang Y; Ma L
    PLoS Genet; 2022 Apr; 18(4):e1010126. PubMed ID: 35482723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a putative C. elegans potassium channel gene (Ce-slo-2) distantly related to Ca(2+)-activated K(+) channels.
    Lim HH; Park BJ; Choi HS; Park CS; Eom SH; Ahnn J
    Gene; 1999 Nov; 240(1):35-43. PubMed ID: 10564810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents.
    Varga AW; Yuan LL; Anderson AE; Schrader LA; Wu GY; Gatchel JR; Johnston D; Sweatt JD
    J Neurosci; 2004 Apr; 24(14):3643-54. PubMed ID: 15071113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference.
    Santi CM; Yuan A; Fawcett G; Wang ZW; Butler A; Nonet ML; Wei A; Rojas P; Salkoff L
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14391-6. PubMed ID: 14612577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral defects in C. elegans egl-36 mutants result from potassium channels shifted in voltage-dependence of activation.
    Johnstone DB; Wei A; Butler A; Salkoff L; Thomas JH
    Neuron; 1997 Jul; 19(1):151-64. PubMed ID: 9247271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans.
    de la Cruz IP; Levin JZ; Cummins C; Anderson P; Horvitz HR
    J Neurosci; 2003 Oct; 23(27):9133-45. PubMed ID: 14534247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KCNQ-like potassium channels in Caenorhabditis elegans. Conserved properties and modulation.
    Wei AD; Butler A; Salkoff L
    J Biol Chem; 2005 Jun; 280(22):21337-45. PubMed ID: 15797864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling.
    Ivashikina N; Deeken R; Ache P; Kranz E; Pommerrenig B; Sauer N; Hedrich R
    Plant J; 2003 Dec; 36(6):931-45. PubMed ID: 14675456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations affecting the delayed rectifier potassium current in Drosophila.
    Chopra M; Gu GG; Singh S
    J Neurogenet; 2000 Jun; 14(2):107-23. PubMed ID: 10992164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of regions that regulate the expression and activity of G protein-gated inward rectifier K+ channels in Xenopus oocytes.
    Stevens EB; Woodward R; Ho IH; Murrell-Lagnado R
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):547-62. PubMed ID: 9379410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel.
    Li P; Slimko EM; Lester HA
    FEBS Lett; 2002 Sep; 528(1-3):77-82. PubMed ID: 12297283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kv2 channels form delayed-rectifier potassium channels in situ.
    Blaine JT; Ribera AB
    J Neurosci; 2001 Mar; 21(5):1473-80. PubMed ID: 11222637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A leak K
    Yue Z; Li Y; Yu B; Xu Y; Chen L; Chitturi J; Meng J; Wang Y; Tian Y; Mouridi SE; Zhang C; Zhen M; Boulin T; Gao S
    PNAS Nexus; 2024 Jul; 3(7):pgae234. PubMed ID: 38957449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLC chloride channels in Caenorhabditis elegans.
    Schriever AM; Friedrich T; Pusch M; Jentsch TJ
    J Biol Chem; 1999 Nov; 274(48):34238-44. PubMed ID: 10567397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem.
    Ketchum KA; Joiner WJ; Sellers AJ; Kaczmarek LK; Goldstein SA
    Nature; 1995 Aug; 376(6542):690-5. PubMed ID: 7651518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent.
    Li Y; Gamper N; Shapiro MS
    J Neurosci; 2004 Jun; 24(22):5079-90. PubMed ID: 15175377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans.
    Bianchi L; Kwok SM; Driscoll M; Sesti F
    J Biol Chem; 2003 Apr; 278(14):12415-24. PubMed ID: 12533541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.