These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11027213)

  • 61. Insights into the molecular mechanisms of temperature compensation from the Drosophila period and timeless mutants.
    Price JL
    Chronobiol Int; 1997 Sep; 14(5):455-68. PubMed ID: 9298282
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of constant light and circadian entrainment of perS flies: evidence for light-mediated delay of the negative feedback loop in Drosophila.
    Marrus SB; Zeng H; Rosbash M
    EMBO J; 1996 Dec; 15(24):6877-86. PubMed ID: 9003764
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The timSL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants.
    Rutila JE; Zeng H; Le M; Curtin KD; Hall JC; Rosbash M
    Neuron; 1996 Nov; 17(5):921-9. PubMed ID: 8938124
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila.
    Leloup JC; Goldbeter A
    Bioessays; 2000 Jan; 22(1):84-93. PubMed ID: 10649294
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock.
    Nitabach MN; Sheeba V; Vera DA; Blau J; Holmes TC
    J Neurobiol; 2005 Jan; 62(1):1-13. PubMed ID: 15389695
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A light-entrainment mechanism for the Drosophila circadian clock.
    Zeng H; Qian Z; Myers MP; Rosbash M
    Nature; 1996 Mar; 380(6570):129-35. PubMed ID: 8600384
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock.
    Ruoff P; Christensen MK; Sharma VK
    J Theor Biol; 2005 Nov; 237(1):41-57. PubMed ID: 15935389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Block in nuclear localization of period protein by a second clock mutation, timeless.
    Vosshall LB; Price JL; Sehgal A; Saez L; Young MW
    Science; 1994 Mar; 263(5153):1606-9. PubMed ID: 8128247
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock.
    Chiu JC; Vanselow JT; Kramer A; Edery I
    Genes Dev; 2008 Jul; 22(13):1758-72. PubMed ID: 18593878
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A mathematical model of the Drosophila circadian clock with emphasis on posttranslational mechanisms.
    Leise TL; Moin EE
    J Theor Biol; 2007 Sep; 248(1):48-63. PubMed ID: 17559887
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Casein kinase 1 promotes synchrony of the circadian clock network.
    Zheng X; Sowcik M; Chen D; Sehgal A
    Mol Cell Biol; 2014 Jul; 34(14):2682-94. PubMed ID: 24820422
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.
    Houl JH; Ng F; Taylor P; Hardin PE
    BMC Neurosci; 2008 Dec; 9():119. PubMed ID: 19094242
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila.
    Kaushik R; Nawathean P; Busza A; Murad A; Emery P; Rosbash M
    PLoS Biol; 2007 Jun; 5(6):e146. PubMed ID: 17535111
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A new role for an old kinase: CK2 and the circadian clock.
    Blau J
    Nat Neurosci; 2003 Mar; 6(3):208-10. PubMed ID: 12601377
    [No Abstract]   [Full Text] [Related]  

  • 75. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections.
    Kaneko M; Hall JC
    J Comp Neurol; 2000 Jun; 422(1):66-94. PubMed ID: 10842219
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Developmental profiles of PERIOD and DOUBLETIME in Drosophila melanogaster ovary.
    Kotwica J; Larson MK; Bebas P; Giebultowicz JM
    J Insect Physiol; 2009 May; 55(5):419-25. PubMed ID: 19223210
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Circadian rhythms. An end in the beginning.
    Dunlap J
    Science; 1998 Jun; 280(5369):1548-9. PubMed ID: 9644021
    [No Abstract]   [Full Text] [Related]  

  • 78. Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila.
    Collins BH; Dissel S; Gaten E; Rosato E; Kyriacou CP
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19021-6. PubMed ID: 16361445
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A role for CK2 in the Drosophila circadian oscillator.
    Akten B; Jauch E; Genova GK; Kim EY; Edery I; Raabe T; Jackson FR
    Nat Neurosci; 2003 Mar; 6(3):251-7. PubMed ID: 12563262
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
    Kadener S; Stoleru D; McDonald M; Nawathean P; Rosbash M
    Genes Dev; 2007 Jul; 21(13):1675-86. PubMed ID: 17578907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.