These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 11027237)

  • 1. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS.
    Watanabe E; Fujikawa A; Matsunaga H; Yasoshima Y; Sako N; Yamamoto T; Saegusa C; Noda M
    J Neurosci; 2000 Oct; 20(20):7743-51. PubMed ID: 11027237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior.
    Hiyama TY; Watanabe E; Okado H; Noda M
    J Neurosci; 2004 Oct; 24(42):9276-81. PubMed ID: 15496663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain.
    Noda M
    Neuroscientist; 2006 Feb; 12(1):80-91. PubMed ID: 16394195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na
    Sakuta H; Lin CH; Yamada M; Kita Y; Tokuoka SM; Shimizu T; Noda M
    Neurosci Res; 2020 May; 154():45-51. PubMed ID: 31150667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs.
    Watanabe U; Shimura T; Sako N; Kitagawa J; Shingai T; Watanabe E; Noda M; Yamamoto T
    Brain Res; 2003 Mar; 967(1-2):247-56. PubMed ID: 12650985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Na-G ion channel is transcribed from a single promoter controlled by distinct neuron- and Schwann cell-specific DNA elements.
    Poiraud E; Gruszczynski C; Porteu A; Cambier H; Escurat M; Koulakoff A; Kahn A; Berwald-Netter Y; Gautron S
    J Neurochem; 1999 Dec; 73(6):2575-85. PubMed ID: 10582621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia.
    Taylor AC; McCarthy JJ; Stocker SD
    Am J Physiol Regul Integr Comp Physiol; 2008 Apr; 294(4):R1285-93. PubMed ID: 18272658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation.
    Vialou V; Amphoux A; Zwart R; Giros B; Gautron S
    J Neurosci; 2004 Mar; 24(11):2846-51. PubMed ID: 15028779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmoregulatory fluid intake but not hypovolemic thirst is intact in mice lacking angiotensin.
    McKinley MJ; Walker LL; Alexiou T; Allen AM; Campbell DJ; Di Nicolantonio R; Oldfield BJ; Denton DA
    Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1533-43. PubMed ID: 18287219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain.
    Noda M
    Exp Physiol; 2007 May; 92(3):513-22. PubMed ID: 17350991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association of thirst, sodium appetite and vasopressin release with c-fos expression in the forebrain of the rat after intracerebroventricular injection of angiotensin II, angiotensin-(1-7) or carbachol.
    Mahon JM; Allen M; Herbert J; Fitzsimons JT
    Neuroscience; 1995 Nov; 69(1):199-208. PubMed ID: 8637618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.
    Matsuda T; Hiyama TY; Niimura F; Matsusaka T; Fukamizu A; Kobayashi K; Kobayashi K; Noda M
    Nat Neurosci; 2017 Feb; 20(2):230-241. PubMed ID: 27991901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional differences in the expression of Fos-like immunoreactivity after central salt loading in conscious rats: modulation by endogenous vasopressin and role of the area postrema.
    Kato K; Chu CP; Kannan H; Ishida Y; Nishimori T; Nose H
    Brain Res; 2004 Oct; 1022(1-2):182-94. PubMed ID: 15353228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite.
    Xing D; Wu Y; Li G; Song S; Liu Y; Liu H; Wang X; Fei Y; Zhang C; Li Y; Zhang L
    Physiol Behav; 2015 Aug; 147():291-9. PubMed ID: 25911266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Fos in rat brain in relation to sodium appetite: furosemide and cerebroventricular renin.
    Rowland NE; Fregly MJ; Han L; Smith G
    Brain Res; 1996 Jul; 728(1):90-6. PubMed ID: 8864301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal raphe nuclei integrate allostatic information evoked by depletion-induced sodium ingestion.
    BadauĂȘ-Passos D; Godino A; Johnson AK; Vivas L; Antunes-Rodrigues J
    Exp Neurol; 2007 Jul; 206(1):86-94. PubMed ID: 17544397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial aortic ligature induces selective long-term c-fos like immunoreactivity in the organum vasculosum of the lamina terminalis, medial preoptic area and choroid plexus in the rat.
    Menendez-Vallina R; Perillan C; Arguelles J; Esteban I; Brime JI; Vijande M; Vega JA
    Neurosci Lett; 2001 Apr; 302(2-3):125-8. PubMed ID: 11290403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased sodium appetite stimulates c-fos expression in the organum vasculosum of the lamina terminalis.
    Lane JM; Herbert J; Fitzsimons JT
    Neuroscience; 1997 Jun; 78(4):1167-76. PubMed ID: 9174082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium sensing in the subfornical organ and body-fluid homeostasis.
    Hiyama TY; Noda M
    Neurosci Res; 2016 Dec; 113():1-11. PubMed ID: 27521454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain sodium sensing for regulation of thirst, salt appetite, and blood pressure.
    Hiyama TY
    Physiol Rep; 2024 Mar; 12(5):e15970. PubMed ID: 38479999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.