BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11027649)

  • 21. Metabolic profiling of oxylipins in germinating cucumber seedlings--lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes.
    Weichert H; Kolbe A; Kraus A; Wasternack C; Feussner I
    Planta; 2002 Aug; 215(4):612-9. PubMed ID: 12172844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A lipoxygenase-divinyl ether synthase pathway in flax (Linum usitatissimum L.) leaves.
    Chechetkin IR; Blufard A; Hamberg M; Grechkin AN
    Phytochemistry; 2008 Jul; 69(10):2008-15. PubMed ID: 18538807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potato tubers exhibit both homolytic and heterolytic hydroperoxide fatty acid-cleaving activities.
    Fauconnier ML; Delcarte J; Hoyaux P; du Jardin P; Marlier M
    Biochem Soc Trans; 2000 Dec; 28(6):853-5. PubMed ID: 11171231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and beta-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes.
    Gerhardt B; Fischer K; Balkenhohl TJ; Pohnert G; Kühn H; Wasternack C; Feussner I
    Planta; 2005 Apr; 220(6):919-30. PubMed ID: 15526214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demonstration of HNE-related aldehyde formation via lipoxygenase-catalyzed synthesis of a bis-allylic dihydroperoxide intermediate.
    Jin J; Zheng Y; Brash AR
    Chem Res Toxicol; 2013 Jun; 26(6):896-903. PubMed ID: 23668325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals.
    Grechkin AN; Brühlmann F; Mukhtarova LS; Gogolev YV; Hamberg M
    Biochim Biophys Acta; 2006 Dec; 1761(12):1419-28. PubMed ID: 17049304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free radical oxidation of coriolic acid (13-(S)-hydroxy-9Z,11E-octadecadienoic acid).
    Manini P; Camera E; Picardo M; Napolitano A; d'Ischia M
    Chem Phys Lipids; 2005 Apr; 134(2):161-71. PubMed ID: 15784234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragmentation of a linoleate-derived γ-hydroperoxy-α,β-unsaturated epoxide to γ-hydroxy- and γ-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical.
    Gu X; Salomon RG
    Free Radic Biol Med; 2012 Feb; 52(3):601-606. PubMed ID: 22155057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The novel pathway for ketodiene oxylipin biosynthesis in Jerusalem artichoke (Helianthus tuberosus) tubers.
    Chechetkin IR; Medvedeva NV; Grechkin AN
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):7-14. PubMed ID: 15522817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
    Sousa BC; Pitt AR; Spickett CM
    Free Radic Biol Med; 2017 Oct; 111():294-308. PubMed ID: 28192230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry.
    Kawai Y; Takeda S; Terao J
    Chem Res Toxicol; 2007 Jan; 20(1):99-107. PubMed ID: 17226932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soybean lipoxygenase-1 oxidizes 3Z-nonenal. A route to 4s-hydroperoxy-2e-nonenal and related products.
    Gardner HW; Grove MJ
    Plant Physiol; 1998 Apr; 116(4):1359-66. PubMed ID: 9536053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes.
    Rabetafika HN; Gigot C; Fauconnier ML; Ongena M; Destain J; du Jardin P; Wathelet JP; Thonart P
    Biotechnol Lett; 2008 Jun; 30(6):1115-9. PubMed ID: 18259877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fatty acid alpha-ketol, a product of the plant lipoxygenase pathway, is oxidized to 3(Z)-dodecendioic acid by a bacterial monooxygenase.
    Schneider C; Wein M; Harmsen D; Schreier P
    Biochem Biophys Res Commun; 1997 Mar; 232(2):364-6. PubMed ID: 9125182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal.
    Schneider C; Boeglin WE; Yin H; Ste DF; Hachey DL; Porter NA; Brash AR
    Lipids; 2005 Nov; 40(11):1155-62. PubMed ID: 16459928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass spectrometric characterization of protein modification by the products of nonenzymatic oxidation of linoleic acid.
    Zhu X; Tang X; Anderson VE; Sayre LM
    Chem Res Toxicol; 2009 Aug; 22(8):1386-97. PubMed ID: 19537826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of 4-hydroxy-2(E)-nonenal on soybean lipoxygenase-1.
    Gardner HW; Deighton N
    Lipids; 2001 Jun; 36(6):623-8. PubMed ID: 11485167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Payne rearrangement during analysis of epoxyalcohols of linoleic and alpha-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry.
    Oliw EH; Garscha U; Nilsson T; Cristea M
    Anal Biochem; 2006 Jul; 354(1):111-26. PubMed ID: 16712763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of endothelial cell apoptosis by lipid hydroperoxide-derived bifunctional electrophiles.
    Jian W; Arora JS; Oe T; Shuvaev VV; Blair IA
    Free Radic Biol Med; 2005 Nov; 39(9):1162-76. PubMed ID: 16214032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of FeII-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry.
    Lee SH; Oe T; Arora JS; Blair IA
    J Mass Spectrom; 2005 May; 40(5):661-8. PubMed ID: 15739161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.