These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 11027706)
1. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Collett CE; Harberd NP; Leyser O Plant Physiol; 2000 Oct; 124(2):553-62. PubMed ID: 11027706 [TBL] [Abstract][Full Text] [Related]
2. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Stamm P; Kumar PP Plant Cell Rep; 2013 Jun; 32(6):759-69. PubMed ID: 23503980 [TBL] [Abstract][Full Text] [Related]
3. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939 [TBL] [Abstract][Full Text] [Related]
4. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Romano CP; Robson PR; Smith H; Estelle M; Klee H Plant Mol Biol; 1995 Mar; 27(6):1071-83. PubMed ID: 7766890 [TBL] [Abstract][Full Text] [Related]
5. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. De Grauwe L; Vandenbussche F; Tietz O; Palme K; Van Der Straeten D Plant Cell Physiol; 2005 Jun; 46(6):827-36. PubMed ID: 15851402 [TBL] [Abstract][Full Text] [Related]
6. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Saibo NJ; Vriezen WH; Beemster GT; Van Der Straeten D Plant J; 2003 Mar; 33(6):989-1000. PubMed ID: 12631324 [TBL] [Abstract][Full Text] [Related]
7. Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation. Liang X; Wang H; Mao L; Hu Y; Dong T; Zhang Y; Wang X; Bi Y Planta; 2012 Dec; 236(6):1791-802. PubMed ID: 22890836 [TBL] [Abstract][Full Text] [Related]
8. Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Smets R; Le J; Prinsen E; Verbelen JP; Van Onckelen HA Planta; 2005 Apr; 221(1):39-47. PubMed ID: 15843964 [TBL] [Abstract][Full Text] [Related]
9. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis. Pierik R; Djakovic-Petrovic T; Keuskamp DH; de Wit M; Voesenek LA Plant Physiol; 2009 Apr; 149(4):1701-12. PubMed ID: 19211699 [TBL] [Abstract][Full Text] [Related]
10. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. Robles LM; Deslauriers SD; Alvarez AA; Larsen PB J Exp Bot; 2012 Mar; 63(5):2231-41. PubMed ID: 22238449 [TBL] [Abstract][Full Text] [Related]
11. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. Bours R; Kohlen W; Bouwmeester HJ; van der Krol A Plant Physiol; 2015 Feb; 167(2):517-30. PubMed ID: 25516603 [TBL] [Abstract][Full Text] [Related]
12. Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl. Gendreau E; Orbovic V; Höfte H; Traas J Planta; 1999 Oct; 209(4):513-6. PubMed ID: 10550633 [TBL] [Abstract][Full Text] [Related]
13. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Jensen PJ; Hangarter RP; Estelle M Plant Physiol; 1998 Feb; 116(2):455-62. PubMed ID: 9489005 [TBL] [Abstract][Full Text] [Related]
15. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Vandenbussche F; Smalle J; Le J; Saibo NJ; De Paepe A; Chaerle L; Tietz O; Smets R; Laarhoven LJ; Harren FJ; Van Onckelen H; Palme K; Verbelen JP; Van Der Straeten D Plant Physiol; 2003 Mar; 131(3):1228-38. PubMed ID: 12644673 [TBL] [Abstract][Full Text] [Related]
16. The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Ephritikhine G; Fellner M; Vannini C; Lapous D; Barbier-Brygoo H Plant J; 1999 May; 18(3):303-14. PubMed ID: 10377995 [TBL] [Abstract][Full Text] [Related]
17. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Lehman A; Black R; Ecker JR Cell; 1996 Apr; 85(2):183-94. PubMed ID: 8612271 [TBL] [Abstract][Full Text] [Related]
18. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Gray WM; Ostin A; Sandberg G; Romano CP; Estelle M Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7197-202. PubMed ID: 9618562 [TBL] [Abstract][Full Text] [Related]
19. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation. Lee K; Seo PJ PLoS One; 2017; 12(7):e0181804. PubMed ID: 28746399 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana. Miyazaki Y; Jikumaru Y; Takase T; Saitoh A; Sugitani A; Kamiya Y; Kiyosue T Plant Cell Rep; 2016 Feb; 35(2):455-67. PubMed ID: 26601822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]