BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 1102805)

  • 1. Energy conservation and uncoupling in mitochondria.
    Hatefi Y
    J Supramol Struct; 1975; 3(3):201-13. PubMed ID: 1102805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and localization of mitochondrial uncoupler binding sites with an uncoupler capable of photoaffinity labeling.
    Hanstein WG; Hatefi Y
    J Biol Chem; 1974 Mar; 249(5):1356-62. PubMed ID: 4817750
    [No Abstract]   [Full Text] [Related]  

  • 4. Trinitrophenol: a membrane-impermeable uncoupler of oxidative phosphorylation.
    Hanstein WG; Hatefi Y
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):288-92. PubMed ID: 4521802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoaffinity labeling of uncoupler binding sites on mitochondrial membrane.
    Kurup CK; Sanadi DR
    J Bioenerg Biomembr; 1977 Feb; 9(1):1-15. PubMed ID: 881422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic inhibitors of mitochondrial ATP synthesis.
    Lardy H; Reed P; Lin CH
    Fed Proc; 1975 Jul; 34(8):1707-10. PubMed ID: 124269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Halidor, 1-benzyl-1-(3'-dimethylaminopropoxy)-cyclohep tane fumarate as an uncoupler and inhibitor of the respiratory chain].
    Belous AM; Lemeshko VV; Iasaĭtis AA
    Biokhimiia; 1976 May; 41(5):881-5. PubMed ID: 192335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of "high-energy" phosphate bonds to energy transductions.
    Boyer PD; Stokes BO; Wolcott RG; Degani C
    Fed Proc; 1975 Jul; 34(8):1711-7. PubMed ID: 124270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the oligomycin-sensitive ATPase from yeast mitochondria. Reconstitution of ATP-32Pi exchange in the presence of phospholipids.
    Ryrie IJ
    J Supramol Struct; 1975; 3(3):242-7. PubMed ID: 171520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) uncouples mitochondrial oxidative phosphorylation in both sea lamprey (Petromyzon marinus) and TFM-tolerant rainbow trout (Oncorhynchus mykiss).
    Birceanu O; McClelland GB; Wang YS; Brown JC; Wilkie MP
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Apr; 153(3):342-9. PubMed ID: 21172453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation].
    Samartsev VN; Kozhina OV; Polishchuk LS
    Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?].
    Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV
    Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The respiratory effects of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates.
    Ellard JP; McCudden CR; Tanega C; James KA; Ratkovic S; Staples JF; Wagner GF
    Mol Cell Endocrinol; 2007 Jan; 264(1-2):90-101. PubMed ID: 17092635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rapid labeling of adenosine triphosphate by 32P-labeled inorganic phosphate and the exchange of phosphate oxygens as related to conformational coupling in oxidative phosphorylation.
    Cross RL; Boyer PD
    Biochemistry; 1975 Jan; 14(2):392-8. PubMed ID: 1168064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of menadione and 2,3-dimethylnaphthoquinone on the energy-coupling reactions of beef-heart mitochondria. Evidence for the involvement of a thiol group in the reactions of oxidative phosphorylation.
    Young JM
    Biochem Pharmacol; 1971 Jan; 20(1):163-71. PubMed ID: 4398313
    [No Abstract]   [Full Text] [Related]  

  • 16. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase.
    Herweijer MA; Berden JA; Slater EC
    Biochim Biophys Acta; 1986 Apr; 849(2):276-87. PubMed ID: 2421768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Proton translocation in membranes of submitochondrial particles].
    Dontsov AE; Iaguzhinskiĭ LS
    Biokhimiia; 1977 Jun; 42(6):1123-7. PubMed ID: 329901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of uncouplers of oxidative phosphorylation on oxygen uptake, ubiquinone redox status and energy-rich phosphate levels of isolated atria.
    Lechner V; Siess M; Hoffmann PC
    Eur J Biochem; 1970 Jan; 12(1):117-25. PubMed ID: 5434277
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of fluorescent probes with submitochondrial particles during oxidative phosphorylation.
    Datta A; Penefsky HS
    J Biol Chem; 1970 Apr; 245(7):1537-44. PubMed ID: 4245220
    [No Abstract]   [Full Text] [Related]  

  • 20. On the nature of the mechanism of oxidative phosphorylation in mitochondria: a model and supportive evidence.
    Valdivia E
    Physiol Chem Phys; 1972; 4(4):317-24. PubMed ID: 4681767
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.