These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1102851)

  • 21. Biochemical genetics of bacteria.
    Gots JS; Benson CE
    Annu Rev Genet; 1974; 8():79-101. PubMed ID: 4613265
    [No Abstract]   [Full Text] [Related]  

  • 22. Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants.
    Masselot M; De Robichon-Szulmajster H
    Mol Gen Genet; 1975 Aug; 139(2):121-32. PubMed ID: 1101032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae.
    Klar AJ; Halvorson HO
    Mol Gen Genet; 1974; 135(3):203-12. PubMed ID: 4376212
    [No Abstract]   [Full Text] [Related]  

  • 24. Galactose regulation in Saccharomyces cerevisiae. The enzymes encoded by the GAL7, 10, 1 cluster are co-ordinately controlled and separately translated.
    Broach JR
    J Mol Biol; 1979 Jun; 131(1):41-53. PubMed ID: 385888
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulation of orotidylic acid pyrophosphorylase in Saccharomyces cerevisiae.
    Jund R; Lacroute F
    J Bacteriol; 1972 Jan; 109(1):196-202. PubMed ID: 4550660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae.
    Fantes PA; Roberts LM; Huetter R
    Arch Microbiol; 1976 Mar; 107(2):207-14. PubMed ID: 769720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of a dominant, constitutive mutation, PHOO, for the repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Toh-E A; Oshima Y
    J Bacteriol; 1974 Nov; 120(2):608-17. PubMed ID: 4616940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Genetic regulation of arginine metabolism in fungi (author's transl)].
    Wegleński P
    Postepy Biochem; 1974; 20(3):219-43. PubMed ID: 4603558
    [No Abstract]   [Full Text] [Related]  

  • 29. Genetics of induction and catabolite repression of Maltese synthesis in Saccharomyces cerevisiae.
    Zimmermann FK; Eaton NR
    Mol Gen Genet; 1974; 134(3):261-72. PubMed ID: 4614076
    [No Abstract]   [Full Text] [Related]  

  • 30. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae.
    Dubois E; Grenson M; Wiame JM
    Eur J Biochem; 1974 Oct; 48(2):603-16. PubMed ID: 4614980
    [No Abstract]   [Full Text] [Related]  

  • 32. [Genetico-biochemical study of acid phosphatases in Saccharomyces cerevisiae yeast. V. Genetic control of regulation of acid phosphatase II synthesis].
    Samsonova MG; Padkina MV; Krasnopevtseva NG; Kozhin SA; Smirnov MN
    Genetika; 1975; 11(9):104-15. PubMed ID: 765203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the carbamoylphosphate synthetase belonging to the arginine biosynthetic pathway of Saccharomyces cerevisiae.
    Thuriaux P; Ramos F; Piérard A; Grenson M; Wiame JM
    J Mol Biol; 1972 Jun; 67(2):277-87. PubMed ID: 4557204
    [No Abstract]   [Full Text] [Related]  

  • 34. Regulation of phosphatase synthesis in Saccharomyces cerevisiae--a review.
    Oshima Y; Ogawa N; Harashima S
    Gene; 1996 Nov; 179(1):171-7. PubMed ID: 8955644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A gene controlling the synthesis of non specific alkaline phosphatase in Saccharomyces cerevisiae.
    Toh-E A; Nakamura H; Oshima Y
    Biochim Biophys Acta; 1976 Mar; 428(1):182-92. PubMed ID: 769832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function.
    Hopper JE; Broach JR; Rowe LB
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2878-82. PubMed ID: 351620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mutation reducing feedback regulation by arginine in suppressed pyr-3 mutants in Neurospora.
    Thwaites WM
    Genetics; 1967 Apr; 55(4):769-81. PubMed ID: 6036952
    [No Abstract]   [Full Text] [Related]  

  • 39. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1982 Jan; 2(1):1-10. PubMed ID: 7050664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiratory mutation and galactose metabolism in yeast Saccharomyces cerevisiae.
    Bień M; Kołodyński J; Lachowicz TM
    Acta Microbiol Pol; 1978; 27(3):193-202. PubMed ID: 81593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.