These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 11028520)
1. Quantitative analysis of error bounds in the recovery of depth from defocused images. Rajagopalan AN; Chaudhuri S; Chellappa R J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1722-31. PubMed ID: 11028520 [TBL] [Abstract][Full Text] [Related]
2. Motion-free superresolution and the role of relative blur. Rajagopalan AN; Kiran VP J Opt Soc Am A Opt Image Sci Vis; 2003 Nov; 20(11):2022-32. PubMed ID: 14620330 [TBL] [Abstract][Full Text] [Related]
3. Focused image recovery from two defocused images recorded with different camera settings. Subbarao M; Wei TC; Surya G IEEE Trans Image Process; 1995; 4(12):1613-28. PubMed ID: 18291993 [TBL] [Abstract][Full Text] [Related]
4. Image restoration model for microscopic defocused images based on blurring kernel guidance. Wei Y; Li Q; Hou W Heliyon; 2024 Aug; 10(16):e36151. PubMed ID: 39229525 [TBL] [Abstract][Full Text] [Related]
5. Absolute depth estimation from a single defocused image. Lin J; Ji X; Xu W; Dai Q IEEE Trans Image Process; 2013 Nov; 22(11):4545-50. PubMed ID: 23893725 [TBL] [Abstract][Full Text] [Related]
6. Depth from motion and optical blur with an unscented Kalman filter. Paramanand C; Rajagopalan AN IEEE Trans Image Process; 2012 May; 21(5):2798-811. PubMed ID: 22180508 [TBL] [Abstract][Full Text] [Related]
7. Deep Multi-Scale Feature Learning for Defocus Blur Estimation. Karaali A; Harte N; Jung CR IEEE Trans Image Process; 2022; 31():1097-1106. PubMed ID: 34990362 [TBL] [Abstract][Full Text] [Related]
8. Virtual focus and depth estimation from defocused video sequences. Yang J; Schonfeld D IEEE Trans Image Process; 2010 Mar; 19(3):668-79. PubMed ID: 19933002 [TBL] [Abstract][Full Text] [Related]
10. Joint Depth and Defocus Estimation From a Single Image Using Physical Consistency. Zhang A; Sun J IEEE Trans Image Process; 2021; 30():3419-3433. PubMed ID: 33651692 [TBL] [Abstract][Full Text] [Related]
11. Blurred palmprint recognition based on stable-feature extraction using a Vese-Osher decomposition model. Hong D; Su J; Hong Q; Pan Z; Wang G PLoS One; 2014; 9(7):e101866. PubMed ID: 24992328 [TBL] [Abstract][Full Text] [Related]
12. Simple method of acquiring high-quality light fields based on the chromatic aberration of only one defocused image pair. Jung GS; Won YH Opt Express; 2021 Oct; 29(22):36417-36429. PubMed ID: 34809052 [TBL] [Abstract][Full Text] [Related]
15. The effect of interrupted defocus on blur adaptation. Khan KA; Cufflin MP; Mallen EA Ophthalmic Physiol Opt; 2016 Nov; 36(6):649-656. PubMed ID: 27790776 [TBL] [Abstract][Full Text] [Related]
16. Non-uniform deblurring in HDR image reconstruction. Vijay CS; Paramanand C; Rajagopalan AN; Chellappa R IEEE Trans Image Process; 2013 Oct; 22(10):3739-50. PubMed ID: 23591490 [TBL] [Abstract][Full Text] [Related]
17. Digital multi-focusing from a single photograph taken with an uncalibrated conventional camera. Cao Y; Fang S; Wang Z IEEE Trans Image Process; 2013 Sep; 22(9):3703-14. PubMed ID: 23797254 [TBL] [Abstract][Full Text] [Related]
18. Defocus blur parameters identification by histogram matching. Lin HY; Chou XH J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1694-706. PubMed ID: 23201887 [TBL] [Abstract][Full Text] [Related]
19. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Diether S; Schaeffel F Vision Res; 1997 Mar; 37(6):659-68. PubMed ID: 9156210 [TBL] [Abstract][Full Text] [Related]
20. Estimating spatially varying defocus blur from a single image. Zhu X; Cohen S; Schiller S; Milanfar P IEEE Trans Image Process; 2013 Dec; 22(12):4879-91. PubMed ID: 23974627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]