These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 11028525)
1. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization. Popov E; Nevière M J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1773-84. PubMed ID: 11028525 [TBL] [Abstract][Full Text] [Related]
2. Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence. Popov E; Nevière M Opt Lett; 2000 May; 25(9):598-600. PubMed ID: 18064122 [TBL] [Abstract][Full Text] [Related]
3. Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media. Popov E; Nevière M J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2886-94. PubMed ID: 11688878 [TBL] [Abstract][Full Text] [Related]
4. Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section. Boyer P; Popov E; Nevière M; Tayeb G J Opt Soc Am A Opt Image Sci Vis; 2004 Nov; 21(11):2146-53. PubMed ID: 15536663 [TBL] [Abstract][Full Text] [Related]
5. Field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings. Li L; Granet G J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):738-46. PubMed ID: 21532683 [TBL] [Abstract][Full Text] [Related]
6. Numerical study on the spectroscopic ellipsometry of lamellar gratings made of lossless dielectric materials. Watanabe K; Pistora J; Foldyna M; Postava K; Vlcek J J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):745-51. PubMed ID: 15839282 [TBL] [Abstract][Full Text] [Related]
7. Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures. Antos R Opt Express; 2009 Apr; 17(9):7269-74. PubMed ID: 19399103 [TBL] [Abstract][Full Text] [Related]
8. Vector scattering from one-dimensional periodic perfectly conducting surface: transverse magnetic polarization. Huang Q; Dong TL; Chen B; Li Q; Tian J; Chen P J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2321-7. PubMed ID: 25401261 [TBL] [Abstract][Full Text] [Related]
9. Differential theory of gratings made of anisotropic materials. Watanabe K; Petit R; Nevière M J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):325-34. PubMed ID: 11822595 [TBL] [Abstract][Full Text] [Related]
10. Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction. Wu Y; Lu YY J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1191-6. PubMed ID: 21643404 [TBL] [Abstract][Full Text] [Related]
11. Analysis of diffraction gratings by using an edge element method. Dossou K; Packirisamy M; Fontaine M J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):278-88. PubMed ID: 15717557 [TBL] [Abstract][Full Text] [Related]
12. Design of retrodiffraction gratings for polarization-insensitive and polarization-sensitive characteristics by using the Taguchi method. Lee C; Hane K; Kim W; Lee SK Appl Opt; 2008 Jun; 47(18):3246-53. PubMed ID: 18566618 [TBL] [Abstract][Full Text] [Related]
13. Matched coordinates for the analysis of 1D gratings. Granet G; Bischoff J J Opt Soc Am A Opt Image Sci Vis; 2021 Jun; 38(6):790-798. PubMed ID: 34143148 [TBL] [Abstract][Full Text] [Related]
14. Differential theory: application to highly conducting gratings. Popov E; Chernov B; Nevière M; Bonod N J Opt Soc Am A Opt Image Sci Vis; 2004 Feb; 21(2):199-206. PubMed ID: 14870713 [TBL] [Abstract][Full Text] [Related]
15. Diffraction theory: application of the fast Fourier factorization to cylindrical devices with arbitrary cross section lighted in conical mounting. Boyer P; Popov E; Nevière M; Renversez G J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1146-58. PubMed ID: 16642193 [TBL] [Abstract][Full Text] [Related]
16. Staircase approximation validity for arbitrary-shaped gratings. Popov E; Nevière M; Gralak B; Tayeb G J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):33-42. PubMed ID: 11778730 [TBL] [Abstract][Full Text] [Related]
17. Numerical integration schemes used on the differential theory for anisotropic gratings. Watanabe K J Opt Soc Am A Opt Image Sci Vis; 2002 Nov; 19(11):2245-52. PubMed ID: 12413126 [TBL] [Abstract][Full Text] [Related]
18. Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons. Khavasi A Opt Lett; 2013 Aug; 38(16):3009-12. PubMed ID: 24104634 [TBL] [Abstract][Full Text] [Related]
20. Study of the differential theory of lamellar gratings made of highly conducting materials. Watanabe K J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):69-72. PubMed ID: 16478061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]