These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11028627)
1. Constant holdup times in gas chromatography by programming of column temperature and inlet pressure. Nahir TM; Morales KM Anal Chem; 2000 Oct; 72(19):4667-70. PubMed ID: 11028627 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the plate height of capillary columns operated at any inlet pressure of the carrier gas by using few retention data measured under isobaric conditions. Vezzani S; Moretti P; Castello G J Chromatogr A; 2003 Apr; 994(1-2):103-25. PubMed ID: 12779223 [TBL] [Abstract][Full Text] [Related]
3. Linear programming of inlet pressure or flow-rate in isothermal gas chromatography with near-vacuum outlet pressure. Nahir TM; Gerbec JA J Chromatogr A; 2001 Apr; 915(1-2):265-70. PubMed ID: 11358258 [TBL] [Abstract][Full Text] [Related]
5. Very high pressure liquid chromatography using fully porous particles: quantitative analysis of fast gradient separations without post-run times. Stankovich JJ; Gritti F; Stevenson PG; Beaver LA; Guiochon G J Chromatogr A; 2014 Jan; 1324():155-63. PubMed ID: 24296292 [TBL] [Abstract][Full Text] [Related]
6. Prediction of retention times in linear gradient temperature and pressure programmed analysis on capillary columns. Vezzani S; Moretti P; Mazzi M; Castello G J Chromatogr A; 2004 Nov; 1055(1-2):151-8. PubMed ID: 15560491 [TBL] [Abstract][Full Text] [Related]
7. Hyphenation of short monolithic silica capillary column with vacuum ultraviolet spectroscopy detector for light hydrocarbons separation. Liu H; Raffin G; Trutt G; Dugas V; Demesmay C; Randon J J Chromatogr A; 2019 Jun; 1595():174-179. PubMed ID: 30799064 [TBL] [Abstract][Full Text] [Related]
8. Band-trajectory model for temperature-programmed series-coupled column ensembles with pressure-tunable selectivity. McGuigan M; Sacks R Anal Chem; 2001 Jul; 73(13):3112-8. PubMed ID: 11467561 [TBL] [Abstract][Full Text] [Related]
9. Transient flow in response to a pressure pulse in gas chromatography. Nahir TM Anal Chem; 2003 Sep; 75(17):4462-6. PubMed ID: 14632050 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the separation number of capillary columns in programmed temperature gas chromatographic analysis. Vezzani S; Moretti P; Castello G Anal Chim Acta; 2007 Sep; 599(1):151-61. PubMed ID: 17765075 [TBL] [Abstract][Full Text] [Related]
11. Determination of retention indices in constant inlet pressure mode and conversion among different column temperature conditions in comprehensive two-dimensional gas chromatography. Zhu S; Lu X; Qiu Y; Pang T; Kong H; Wu C; Xu G J Chromatogr A; 2007 May; 1150(1-2):28-36. PubMed ID: 17010352 [TBL] [Abstract][Full Text] [Related]
12. Novel on-column and inverted operating modes of a microcounter-current flame ionization detector. Hayward TC; Thurbide KB J Chromatogr A; 2008 Jul; 1200(1):2-7. PubMed ID: 18313677 [TBL] [Abstract][Full Text] [Related]
13. On retentivity tuning by flow in the second column of different comprehensive two dimensional gas chromatographic configurations. Krupčík J; Májek P; Gorovenko R; Sandra P; Armstrong DW J Chromatogr A; 2011 May; 1218(21):3186-9. PubMed ID: 21489538 [TBL] [Abstract][Full Text] [Related]
14. Behavior of short silica monolithic columns in high pressure gas chromatography. Maniquet A; Bruyer N; Raffin G; Baco-Antoniali F; Demesmay C; Dugas V; Randon J J Chromatogr A; 2016 Aug; 1460():153-9. PubMed ID: 27432790 [TBL] [Abstract][Full Text] [Related]
15. Prediction of the resolution of capillary columns in different conditions of inlet pressure and temperature. Vezzani S; Moretti P; Castello G; Travaini G J Chromatogr A; 2004 Feb; 1026(1-2):201-21. PubMed ID: 14763748 [TBL] [Abstract][Full Text] [Related]
16. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography. Sapozhnikova Y; Lehotay SJ Anal Chim Acta; 2015 Oct; 899():13-22. PubMed ID: 26547491 [TBL] [Abstract][Full Text] [Related]
17. Retention models for programmed gas chromatography. Castello G; Moretti P; Vezzani S J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102 [TBL] [Abstract][Full Text] [Related]
18. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening. Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787 [TBL] [Abstract][Full Text] [Related]
19. High-speed analysis of complex indoor VOC mixtures by vacuum-outlet GC with air carrier gas and programmable retention. Grall AJ; Zellers ET; Sacks RD Environ Sci Technol; 2001 Jan; 35(1):163-9. PubMed ID: 11352005 [TBL] [Abstract][Full Text] [Related]
20. A portable, high-speed, vacuum-outlet GC vapor analyzer employing air as carrier gas and surface acoustic wave detection. Whiting JJ; Lu CJ; Zellers ET; Sacks RD Anal Chem; 2001 Oct; 73(19):4668-75. PubMed ID: 11605845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]