These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11028627)
41. Very high pressure liquid chromatography using core-shell particles: quantitative analysis of fast gradient separations without post-run times. Stankovich JJ; Gritti F; Stevenson PG; Beaver LA; Guiochon G J Chromatogr A; 2014 Jan; 1325():99-108. PubMed ID: 24370000 [TBL] [Abstract][Full Text] [Related]
42. Design for gas chromatography-corona discharge-ion mobility spectrometry. Jafari MT; Saraji M; Sherafatmand H Anal Chem; 2012 Nov; 84(22):10077-84. PubMed ID: 23083064 [TBL] [Abstract][Full Text] [Related]
43. Fundamental chromatographic equations designed for columns packed with very fine particles and operated at very high pressures. Applications to the prediction of elution times and the column efficiencies. Gritti F; Guiochon G J Chromatogr A; 2008 Oct; 1206(2):113-22. PubMed ID: 18775540 [TBL] [Abstract][Full Text] [Related]
44. [Determination of residual toluene diisocyanate in sponge bra by gas chromatography]. Wang A; Ye P; Huang N; Chen Y; Li X Se Pu; 2017 Jun; 35(6):665-668. PubMed ID: 29048795 [TBL] [Abstract][Full Text] [Related]
45. Column performance and stability for high-speed vacuum-outlet GC of volatile organic compounds using atmospheric pressure air as carrier gas. Grall AJ; Sacks RD Anal Chem; 1999 Nov; 71(22):5199-205. PubMed ID: 10575966 [TBL] [Abstract][Full Text] [Related]
46. Determination of distribution factors for heavy n-alkanes (nC Hernandez-Baez DM; Reid A; Chapoy A; Tohidi B J Chromatogr A; 2019 Apr; 1591():138-146. PubMed ID: 30686646 [TBL] [Abstract][Full Text] [Related]
47. Temperature Programming for High-Speed GC. Leonard C; Grall A; Sacks R Anal Chem; 1999 Jun; 71(11):2123-9. PubMed ID: 21662747 [TBL] [Abstract][Full Text] [Related]
48. High-speed GC and GC/MS with a series-coupled column ensemble using stop-flow operation. Veriotti T; Sacks R Anal Chem; 2001 Jul; 73(13):3045-50. PubMed ID: 11467552 [TBL] [Abstract][Full Text] [Related]
49. GC-on-chip: integrated column and photoionization detector. Akbar M; Shakeel H; Agah M Lab Chip; 2015 Apr; 15(7):1748-58. PubMed ID: 25673367 [TBL] [Abstract][Full Text] [Related]
50. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates. Grall A; Leonard C; Sacks R Anal Chem; 2000 Feb; 72(3):591-8. PubMed ID: 10695147 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of sources of irreproducibility of retention indices under programmed temperature gas chromatography conditions. Wu L; Cho IK; Li Y; Zhang G; Li QX J Chromatogr A; 2017 Apr; 1495():57-63. PubMed ID: 28343685 [TBL] [Abstract][Full Text] [Related]
52. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams. Fialkov AB; Moragn M; Amirav A J Chromatogr A; 2011 Dec; 1218(52):9375-83. PubMed ID: 22119674 [TBL] [Abstract][Full Text] [Related]
53. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions. Wißdorf W; Müller D; Brachthäuser Y; Langner M; Derpmann V; Klopotowski S; Polaczek C; Kersten H; Brockmann K; Benter T J Am Soc Mass Spectrom; 2016 Sep; 27(9):1550-63. PubMed ID: 27245455 [TBL] [Abstract][Full Text] [Related]
54. Dynamic control of split flow in packed column supercritical fluid chromatography using dual resistively heated restrictors. Li JJ; Thurbide KB J Sep Sci; 2009 Jul; 32(14):2469-75. PubMed ID: 19536780 [TBL] [Abstract][Full Text] [Related]
55. Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry. Gras R; Luong J; Haddad PR; Shellie RA J Chromatogr A; 2018 Aug; 1563():171-179. PubMed ID: 29891401 [TBL] [Abstract][Full Text] [Related]
56. [A simple method for determination of flurbiprofen in human plasma by gas chromatography-mass spectrometry]. Satomoto M; Adachi Y; Higuchi H; Watanabe K; Satoh T Masui; 2002 Apr; 51(4):431-4. PubMed ID: 11995356 [TBL] [Abstract][Full Text] [Related]
57. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
58. Volume based vs. time based chromatograms: reproducibility of data for gradient separations under high and low pressure conditions. Stankovich JJ; Gritti F; Stevenson PG; Vajda P; Beaver LA; Guiochon G J Chromatogr A; 2014 May; 1343():79-90. PubMed ID: 24717849 [TBL] [Abstract][Full Text] [Related]
59. [Biological monitoring of occupational exposure to sevoflurane]. Imbriani M; Zadra P; Negri S; Alessio A; Maestri L; Ghittori S Med Lav; 2001; 92(3):173-80. PubMed ID: 11515150 [TBL] [Abstract][Full Text] [Related]
60. Retention modeling and retention time prediction in gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: The contribution of pressure on solute partition. Burel A; Vaccaro M; Cartigny Y; Tisse S; Coquerel G; Cardinael P J Chromatogr A; 2017 Feb; 1485():101-119. PubMed ID: 28108081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]