BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11028696)

  • 1. Experimental and numerical predictions of the ultimate strength of a low-cost composite transtibial prosthesis.
    Hahl J; Taya M
    J Rehabil Res Dev; 2000; 37(4):405-13. PubMed ID: 11028696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue test of low-cost flexible-shank monolimb trans-tibial prosthesis.
    Lee WC; Zhang M
    Prosthet Orthot Int; 2006 Dec; 30(3):305-15. PubMed ID: 17162521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffness and strength tailoring of a hip prosthesis made of advanced composite materials.
    Chang FK; Perez JL; Davidson JA
    J Biomed Mater Res; 1990 Jul; 24(7):873-99. PubMed ID: 2398076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and theoretical framework for manufacturing prosthetic sockets for transtibial amputees.
    Faustini MC; Neptune RR; Crawford RH; Rogers WE; Bosker G
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):304-10. PubMed ID: 17009490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and analysis of modular uniaxial leg adapter.
    Dincel O; Gursel KT; Yildiz H
    Prosthet Orthot Int; 2007 Mar; 31(1):10-26. PubMed ID: 17365881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue strength testing of hip stems with statistical analysis.
    Ploeg HL; Wevers HW; Wyss UP; Bürgi M
    Biomed Mater Eng; 1999; 9(4):243-63. PubMed ID: 10674178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Framework design of an anterior fiber-reinforced hybrid composite fixed partial denture: a 3D finite element study.
    Yokoyama D; Shinya A; Lassila LV; Gomi H; Nakasone Y; Vallittu PK; Shinya A
    Int J Prosthodont; 2009; 22(4):405-12. PubMed ID: 19639081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of monolimb using finite element modelling and statistics-based Taguchi method.
    Lee WC; Zhang M
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):759-66. PubMed ID: 15963612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a finite element model of a transtibial socket liner--an initial study.
    Fisher C; Simpson G; Reynolds D
    Biomed Sci Instrum; 1999; 35():39-44. PubMed ID: 11143383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress analysis of hemispherical ceramic hip prosthesis bearings.
    Anderson IA; Bowden M; Wyatt TP
    Med Eng Phys; 2005 Mar; 27(2):115-22. PubMed ID: 15642507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of a model of a therapeutic shoe: effect of material selection for the outsole.
    Lewis G
    Biomed Mater Eng; 2003; 13(1):75-81. PubMed ID: 12652024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessments of different kinds of stems by experiments and FEM analysis: appropriate stress distribution on a hip prosthesis.
    Sakai R; Itoman M; Mabuchi K
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):826-33. PubMed ID: 16701927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Influence of wall thickness on the stress distribution within transtibial monolimb].
    Liu Z; Fan Y; Zhang M; Jiang W; Pu F; Chen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):562-5. PubMed ID: 15357432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibre reinforced composite dental bridge. Part II: Numerical investigation.
    Li W; Swain MV; Li Q; Ironside J; Steven GP
    Biomaterials; 2004 Sep; 25(20):4995-5001. PubMed ID: 15109861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load-bearing capacity of direct four unit provisional composite bridges with fibre reinforcement.
    Eisenburger M; Riechers J; Borchers L; Stiesch-Scholz M
    J Oral Rehabil; 2008 May; 35(5):375-81. PubMed ID: 18405274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative roll-over analysis of prosthetic feet.
    Curtze C; Hof AL; van Keeken HG; Halbertsma JP; Postema K; Otten B
    J Biomech; 2009 Aug; 42(11):1746-53. PubMed ID: 19446814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress distribution in fiber-reinforced composite inlay fixed partial dentures.
    Rappelli G; Scalise L; Procaccini M; Tomasini EP
    J Prosthet Dent; 2005 May; 93(5):425-32. PubMed ID: 15867751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.