These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11029078)
1. Bio-optical Characteristics and the Vertical Distribution of Photosynthetic Pigments and Photosynthesis in an Artificial Cyanobacterial Mat. Kühl M; Fenchel T Microb Ecol; 2000 Aug; 40(2):94-103. PubMed ID: 11029078 [TBL] [Abstract][Full Text] [Related]
2. Spectral Irradiance and Distribution of Pigments in a Highly Layered Marine Microbial Mat. Pierson BK; Sands VM; Frederick JL Appl Environ Microbiol; 1990 Aug; 56(8):2327-2340. PubMed ID: 16348246 [TBL] [Abstract][Full Text] [Related]
3. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain). Epping E; Kühl M Environ Microbiol; 2000 Aug; 2(4):465-74. PubMed ID: 11234934 [TBL] [Abstract][Full Text] [Related]
4. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. Fisher A; Wangpraseurt D; Larkum AWD; Johnson M; Kühl M; Chen M; Wong HL; Burns BP FEMS Microbiol Ecol; 2019 Jan; 95(1):. PubMed ID: 30380056 [TBL] [Abstract][Full Text] [Related]
5. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Jorgensen BB; Des Marais DJ Limnol Oceanogr; 1988; 33(1):99-113. PubMed ID: 11539749 [TBL] [Abstract][Full Text] [Related]
6. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Nielsen M; Revsbech NP; Kühl M Front Microbiol; 2015; 6():726. PubMed ID: 26257714 [TBL] [Abstract][Full Text] [Related]
7. Growth of green sulphur bacteria in experimental benthic oxygen, sulphide, pH and light gradients. Pringault O; Kühl M; de Wit R; Caumette P Microbiology (Reading); 1998 Apr; 144(4):1051-1061. PubMed ID: 33789390 [TBL] [Abstract][Full Text] [Related]
8. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. Wieland A; Kühl M FEMS Microbiol Ecol; 2006 Feb; 55(2):195-210. PubMed ID: 16420628 [TBL] [Abstract][Full Text] [Related]
9. Optical microsensors for analysis of microbial communities. Kühl M Methods Enzymol; 2005; 397():166-99. PubMed ID: 16260291 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional mapping of photopigment distribution and activity of Chloroflexus-like bacteria in a hypersaline microbial mat. Bachar A; Polerecky L; Fischer JP; Vamvakopoulos K; de Beer D; Jonkers HM FEMS Microbiol Ecol; 2008 Sep; 65(3):434-48. PubMed ID: 18616583 [TBL] [Abstract][Full Text] [Related]
11. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Ramsing NB; Ferris MJ; Ward DM Appl Environ Microbiol; 2000 Mar; 66(3):1038-49. PubMed ID: 10698769 [TBL] [Abstract][Full Text] [Related]
12. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Jørgensen BB; Revsbech NP; Blackburn TH; Cohen Y Appl Environ Microbiol; 1979 Jul; 38(1):46-58. PubMed ID: 16345415 [TBL] [Abstract][Full Text] [Related]
13. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Jorgensen BB; Cohen Y; Des Marais DJ Appl Environ Microbiol; 1987 Apr; 53(4):879-86. PubMed ID: 11536572 [TBL] [Abstract][Full Text] [Related]
14. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring. Pierson BK; Parenteau MN; Griffin BM Appl Environ Microbiol; 1999 Dec; 65(12):5474-83. PubMed ID: 10584006 [TBL] [Abstract][Full Text] [Related]
15. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
16. Light utilization efficiency in photosynthetic microbial mats. Al-Najjar MA; de Beer D; Kühl M; Polerecky L Environ Microbiol; 2012 Apr; 14(4):982-92. PubMed ID: 22176769 [TBL] [Abstract][Full Text] [Related]
17. Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. Lichtenberg M; Kühl M New Phytol; 2015 Aug; 207(3):559-69. PubMed ID: 25827160 [TBL] [Abstract][Full Text] [Related]
18. Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro, Mexico. Finke N; Hoehler TM; Polerecky L; Buehring B; Thamdrup B Environ Microbiol; 2013 May; 15(5):1532-50. PubMed ID: 23347091 [TBL] [Abstract][Full Text] [Related]
19. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Haas S; de Beer D; Klatt JM; Fink A; Rench RM; Hamilton TL; Meyer V; Kakuk B; Macalady JL Front Microbiol; 2018; 9():858. PubMed ID: 29755448 [TBL] [Abstract][Full Text] [Related]
20. Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community. Garcia-Pichel F; Mechling M; Castenholz RW Appl Environ Microbiol; 1994 May; 60(5):1500-11. PubMed ID: 16349251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]