These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 11029235)

  • 1. Cerebral nitric oxide concentration and microcirculation during hypercapnia, hypoxia, and high intracranial pressure in pigs.
    Kirkeby OJ; Kutzsche S; Risöe C; Rise IR
    J Clin Neurosci; 2000 Nov; 7(6):531-8. PubMed ID: 11029235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide synthesis inhibition during cerebral hypoxemia and reoxygenation with 100% oxygen in newborn pigs.
    Kutzsche S; Solas AB; Lyberg T; Saugstad OD
    Biol Neonate; 2002; 82(3):197-206. PubMed ID: 12373071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reduced cerebral perfusion pressure on cerebral blood flow following inhibition of nitric oxide synthesis.
    Rise IR; Kirkeby OJ
    J Neurosurg; 1998 Sep; 89(3):448-53. PubMed ID: 9724120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the endogenous nitric oxide in the vasodilatory tone and CO2 responsiveness of the rostral ventrolateral medulla microcirculation in the rat.
    Wołk R; Nowicki D; Siemińska J; Trzebski A
    J Physiol Pharmacol; 1995 Jun; 46(2):127-39. PubMed ID: 7670122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nitric oxide synthesis blockade and angiotensin II on blood flow and spontaneous vasomotion in the rat cerebral microcirculation.
    Morita-Tsuzuki Y; Bouskela E; Hardebo JE
    Acta Physiol Scand; 1993 Aug; 148(4):449-54. PubMed ID: 8213199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat.
    Pelligrino DA; Koenig HM; Albrecht RF
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):80-7. PubMed ID: 8417012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of nitric oxide in the rat cerebral cortex during hypercapnoea.
    Harada M; Fuse A; Tanaka Y
    Neuroreport; 1997 Mar; 8(4):999-1002. PubMed ID: 9141080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hypoxia and reoxygenation with 21% and 100%-oxygen on cerebral nitric oxide concentration and microcirculation in newborn piglets.
    Kutzsche S; Kirkeby OJ; Rise IR; Saugstad OD
    Biol Neonate; 1999 Sep; 76(3):153-67. PubMed ID: 10460953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of nitric oxide in hypoxic cerebral vasodilatation in the ovine fetus.
    Hunter CJ; Blood AB; White CR; Pearce WJ; Power GG
    J Physiol; 2003 Jun; 549(Pt 2):625-33. PubMed ID: 12665609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.
    Petropoulos IK; Pournaras JA; Stangos AN; Pournaras CJ
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):378-84. PubMed ID: 18676634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in transcranial Doppler flow velocity waveform following inhibition of nitric oxide synthesis. Experimental study in anaesthetised rabbits.
    Richards HK; Kozniewska E; Czosnyka M; Pickard JD
    Acta Neurochir (Wien); 1997; 139(1):63-9; discussion 69-70. PubMed ID: 9059714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitric oxide synthesis inhibition on post-occlusive choroidal blood flow in rats.
    Koss MC
    J Ocul Pharmacol Ther; 2000 Feb; 16(1):55-64. PubMed ID: 10673132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decrease in cochlear blood flow with infusion of nitric oxide synthase inhibitor and its recovery with L-arginine infusion: comparison with abdominal blood flow and auricular blood flow.
    Hoshijima H; Makimoto K
    Acta Otolaryngol; 2002 Dec; 122(8):808-15. PubMed ID: 12542197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits.
    Sugiyama T; Oku H; Ikari S; Ikeda T
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1149-52. PubMed ID: 10752953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of L-NOARG and L-NAME on basal blood flow and ACh-induced vasodilatation in rat diaphragmatic microcirculation.
    Chang HY; Chen CW; Hsiue TR
    Br J Pharmacol; 1997 Jan; 120(2):326-32. PubMed ID: 9117127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nitric oxide in the nucleus isthmi on the hypoxic and hypercarbic drive to breathing of toads.
    Gargaglioni LH; Branco LG
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R338-45. PubMed ID: 11404310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reoxygenation with 100 or 21% oxygen after cerebral hypoxemia-ischemia-hypercapnia in newborn piglets.
    Solås AB; Kalous P; Saugstad OD
    Biol Neonate; 2004; 85(2):105-11. PubMed ID: 14631156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal role for H1 and H2 histamine receptors in cutaneous thermal hyperemia to local heating in humans.
    Wong BJ; Williams SJ; Minson CT
    J Appl Physiol (1985); 2006 Feb; 100(2):535-40. PubMed ID: 16195389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regular slow wave flowmotion in skeletal muscle is not determined by nitric oxide and endothelin.
    Erni D; Sigurdsson GH; Banic A; Wheatley AM
    Microvasc Res; 1999 Sep; 58(2):167-76. PubMed ID: 10458932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide and receptors for VIP and PACAP in cutaneous active vasodilation during heat stress in humans.
    Kellogg DL; Zhao JL; Wu Y; Johnson JM
    J Appl Physiol (1985); 2012 Nov; 113(10):1512-8. PubMed ID: 22961270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.