BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11029416)

  • 1. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar.
    van den Bogaard PT; Kleerebezem M; Kuipers OP; de Vos WM
    J Bacteriol; 2000 Nov; 182(21):5982-9. PubMed ID: 11029416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Yoshii T; Hino T
    Appl Environ Microbiol; 2004 Sep; 70(9):5244-51. PubMed ID: 15345406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system.
    Jankovic I; Egeter O; Brückner R
    J Bacteriol; 2001 Jan; 183(2):580-6. PubMed ID: 11133951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
    Vaughan EE; van den Bogaard PT; Catzeddu P; Kuipers OP; de Vos WM
    J Bacteriol; 2001 Feb; 183(4):1184-94. PubMed ID: 11157930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of Streptococcus salivarius lactose permease (LacS) by HPr(His ~ P) and HPr(Ser-P)(His ~ P) and effects on growth.
    Lessard C; Cochu A; Lemay JD; Roy D; Vaillancourt K; Frenette M; Moineau S; Vadeboncoeur C
    J Bacteriol; 2003 Dec; 185(23):6764-72. PubMed ID: 14617640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
    Wouters JA; Kamphuis HH; Hugenholtz J; Kuipers OP; de Vos WM; Abee T
    Appl Environ Microbiol; 2000 Sep; 66(9):3686-91. PubMed ID: 10966377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
    Iyer R; Baliga NS; Camilli A
    J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria.
    Deutscher J; Küster E; Bergstedt U; Charrier V; Hillen W
    Mol Microbiol; 1995 Mar; 15(6):1049-53. PubMed ID: 7623661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity of the lactose transporter from Streptococcus thermophilus is increased by phosphorylated IIA and the action of beta-galactosidase.
    Geertsma ER; Duurkens RH; Poolman B
    Biochemistry; 2005 Dec; 44(48):15889-97. PubMed ID: 16313191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways for lactose/galactose catabolism by Streptococcus salivarius.
    Chen YY; Betzenhauser MJ; Snyder JA; Burne RA
    FEMS Microbiol Lett; 2002 Mar; 209(1):75-9. PubMed ID: 12007657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.