These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1102943)

  • 1. Citrate synthaseless glutamic acid auxotroph of Saccharomyces cerevisiae.
    Burand JP; Drillien R; Bhattacharjee JK
    Mol Gen Genet; 1975 Sep; 139(4):303-9. PubMed ID: 1102943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of glutamic acid in Saccharomyces: accumulation of tricarboxylic acid cycle intermediates in a glutamate auxotroph.
    Crocker WH; Bhattacharjee JK
    Appl Microbiol; 1973 Sep; 26(3):303-8. PubMed ID: 4751788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of lysine in Saccharomyces cervisiae: properties and spectrophotometric determination of homocitrate synthase activity.
    Gray GS; Bhattacharjee JK
    Can J Microbiol; 1976 Nov; 22(11):1664-7. PubMed ID: 10066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of citrate synthase activity of Saccharomyces cerevisiae.
    Coleman JS; Bhattacharjee JK
    Antonie Van Leeuwenhoek; 1975; 41(3):249-56. PubMed ID: 2100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic changes in Saccharomyces cerevisiae strains lacking citrate synthases.
    Kispal G; Rosenkrantz M; Guarente L; Srere PA
    J Biol Chem; 1988 Aug; 263(23):11145-9. PubMed ID: 3136154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of 14C-labelled carbon from glucose and glutamate during anaerobic growth of Saccharomyces cerevisiae.
    Albers E; Gustafsson L; Niklasson C; Lidén G
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1683-1690. PubMed ID: 9639938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRICARBOXYLIC ACID CYCLE MUTANTS IN SACCHAROMYCES: COMPARISON OF INDEPENDENTLY DERIVED MUTANTS.
    OGUR M; ROSHANMANESH A; OGUR S
    Science; 1965 Mar; 147(3665):1590. PubMed ID: 14260378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derepression of citrate synthase in Saccharomyces cerevisiae may occur at the level of transcription.
    Hoosein MA; Lewin AS
    Mol Cell Biol; 1984 Feb; 4(2):247-53. PubMed ID: 6199662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of acetyl-CoA synthetase of Saccharomyces cerevisiae.
    Coleman JS; Bhattacharjee JK
    Can J Microbiol; 1976 May; 22(5):762-4. PubMed ID: 6141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae.
    Blanchard L; Karst F
    Gene; 1993 Mar; 125(2):185-9. PubMed ID: 8096487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the IDH2 gene encoding the catalytic subunit of the yeast NAD+-dependent isocitrate dehydrogenase can be suppressed by mutations in the CIT1 gene encoding citrate synthase and other genes of oxidative metabolism.
    Gadde DM; McCammon MT
    Arch Biochem Biophys; 1997 Aug; 344(1):139-49. PubMed ID: 9244391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of respiratory growth by Ras: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2.
    Swiegers JH; Pretorius IS; Bauer FF
    Curr Genet; 2006 Sep; 50(3):161-71. PubMed ID: 16832579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of citrate synthase into citryl-CoA lyase as a result of mutation of the active-site aspartic acid residue to glutamic acid.
    Man WJ; Li Y; O'Connor CD; Wilton DC
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):521-6. PubMed ID: 1684105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid.
    Kurtz M; Bhattacharjee JK
    J Gen Microbiol; 1975 Jan; 86(1):103-10. PubMed ID: 1167573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.
    González A; Rodríguez L; Olivera H; Soberón M
    J Gen Microbiol; 1985 Oct; 131(10):2565-71. PubMed ID: 2866224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis.
    Hayward DC; Delaney SJ; Campbell HD; Ghysen A; Benzer S; Kasprzak AB; Cotsell JN; Young IG; Miklos GL
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2979-83. PubMed ID: 8096642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of citrate synthase isoforms from S. cerevisiae.
    Graybill ER; Rouhier MF; Kirby CE; Hawes JW
    Arch Biochem Biophys; 2007 Sep; 465(1):26-37. PubMed ID: 17570335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a peptide transport-deficient mutant of yeast.
    Marder R; Rose B; Becker JM; Naider F
    J Bacteriol; 1978 Dec; 136(3):1174-7. PubMed ID: 363692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase.
    Jia YK; Bécam AM; Herbert CJ
    Mol Microbiol; 1997 Apr; 24(1):53-9. PubMed ID: 9140965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated regulation of ammonium assimilation and carbon catabolism by glyoxylate in Saccharomyces cerevisiae.
    González A; Rodríguez L; Folch J; Soberón M; Olivera H
    J Gen Microbiol; 1987 Sep; 133(9):2497-501. PubMed ID: 2896226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.