BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 11029542)

  • 21. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist.
    Satoh S; Matsumura H; Koike N; Tokunaga Y; Maeda T; Hayaishi O
    Eur J Neurosci; 1999 May; 11(5):1587-97. PubMed ID: 10215911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking.
    Vazquez J; Baghdoyan HA
    Am J Physiol Regul Integr Comp Physiol; 2001 Feb; 280(2):R598-601. PubMed ID: 11208592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons.
    Zant JC; Rozov S; Wigren HK; Panula P; Porkka-Heiskanen T
    J Neurosci; 2012 Sep; 32(38):13244-54. PubMed ID: 22993440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats.
    Murillo-Rodriguez E; Blanco-Centurion C; Gerashchenko D; Salin-Pascual RJ; Shiromani PJ
    Neuroscience; 2004; 123(2):361-70. PubMed ID: 14698744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat.
    Portas CM; McCarley RW
    Brain Res; 1994 Jun; 648(2):306-12. PubMed ID: 7922546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nitric oxide synthase inhibitor NG-Nitro-L-arginine increases basal forebrain acetylcholine release during sleep and wakefulness.
    Vazquez J; Lydic R; Baghdoyan HA
    J Neurosci; 2002 Jul; 22(13):5597-605. PubMed ID: 12097511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade.
    Kalinchuk AV; McCarley RW; Porkka-Heiskanen T; Basheer R
    J Neurochem; 2011 Jan; 116(2):260-72. PubMed ID: 21062286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinergic basal forebrain structures are involved in the mediation of the arousal effect of noradrenaline.
    Lelkes Z; Porkka-Heiskanen T; Stenberg D
    J Sleep Res; 2013 Dec; 22(6):721-6. PubMed ID: 23701447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide production in the basal forebrain is required for recovery sleep.
    Kalinchuk AV; Lu Y; Stenberg D; Rosenberg PA; Porkka-Heiskanen T
    J Neurochem; 2006 Oct; 99(2):483-98. PubMed ID: 17029601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence.
    Sharma R; Engemann S; Sahota P; Thakkar MM
    J Neurochem; 2010 Nov; 115(3):782-94. PubMed ID: 20807311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming.
    Guzmán-Marín R; Alam MN; Szymusiak R; Drucker-Colín R; Gong H; McGinty D
    Brain Res; 2000 Sep; 875(1-2):23-34. PubMed ID: 10967295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol.
    Thakkar MM; Engemann SC; Sharma R; Sahota P
    Alcohol Clin Exp Res; 2010 Jun; 34(6):997-1005. PubMed ID: 20374215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats.
    Thakkar MM; Ramesh V; Strecker RE; McCarley RW
    Arch Ital Biol; 2001 Apr; 139(3):313-28. PubMed ID: 11330208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of adenosine in the regulation of sleep.
    Huang ZL; Urade Y; Hayaishi O
    Curr Top Med Chem; 2011; 11(8):1047-57. PubMed ID: 21401496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The disconnected brain stem does not support rapid eye movement sleep rebound following selective deprivation.
    de Andrés I; Garzón M; Villablanca JR
    Sleep; 2003 Jun; 26(4):419-25. PubMed ID: 12841367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypothalamic control of sleep.
    Szymusiak R; Gvilia I; McGinty D
    Sleep Med; 2007 Jun; 8(4):291-301. PubMed ID: 17468047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local energy depletion in the basal forebrain increases sleep.
    Kalinchuk AV; Urrila AS; Alanko L; Heiskanen S; Wigren HK; Suomela M; Stenberg D; Porkka-Heiskanen T
    Eur J Neurosci; 2003 Feb; 17(4):863-9. PubMed ID: 12603276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenosine and sleep.
    Porkka-Heiskanen T; Alanko L; Kalinchuk A; Stenberg D
    Sleep Med Rev; 2002 Aug; 6(4):321-32. PubMed ID: 12531135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of polysialylated neural cell adhesion molecule in rapid eye movement sleep regulation in rats.
    Black MA; Deurveilher S; Seki T; Marsh DR; Rutishauser U; Rafuse VF; Semba K
    Eur J Neurosci; 2009 Dec; 30(11):2190-204. PubMed ID: 20128854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.