These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1102955)

  • 21. Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria.
    Fiskum G; Cockrell RS
    Arch Biochem Biophys; 1985 Aug; 240(2):723-33. PubMed ID: 2411223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interaction of La 3+ with mitochondria in relation to respiration-coupled Ca 2+ transport.
    Lehninger AL; Carafoli E
    Arch Biochem Biophys; 1971 Apr; 143(2):506-15. PubMed ID: 5558134
    [No Abstract]   [Full Text] [Related]  

  • 23. Kinetic evidence for calcium-ion and phosphate-ion transport systems in mitochondria from Ehrlich ascites tumour cells.
    Thorne RF; Bygrave FL
    FEBS Lett; 1975 Aug; 56(2):185-8. PubMed ID: 1157937
    [No Abstract]   [Full Text] [Related]  

  • 24. Isolation of a divalent cation ionophore from beef heart mitochondria.
    Blondin GA
    Biochem Biophys Res Commun; 1974 Jan; 56(1):97-105. PubMed ID: 4362945
    [No Abstract]   [Full Text] [Related]  

  • 25. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient.
    Heaton GM; Nicholls DG
    Biochem J; 1976 Jun; 156(3):635-46. PubMed ID: 949345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enrichment of ruthenium red-sensitive Ca2+ transport in a population of heavy mitochondria isolated from flight-muscle of Lucilia cuprina. Further evidence for its heterogeneous distribution in the inner mitochondrial membrane.
    Smith RL; Bygrave FL
    FEBS Lett; 1978 Nov; 95(2):303-6. PubMed ID: 720623
    [No Abstract]   [Full Text] [Related]  

  • 27. Calcium transport in human erythrocytes. Separation and reconstitution of high and low Ca affinity (Mg mca)-AT Pase activities in membranes prepared at low ionic strength.
    Quist EE; Roufogalis BD
    Arch Biochem Biophys; 1975 May; 168(1):240-51. PubMed ID: 124551
    [No Abstract]   [Full Text] [Related]  

  • 28. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria.
    Korotkov S; Konovalova S; Emelyanova L; Brailovskaya I
    J Inorg Biochem; 2014 Dec; 141():1-9. PubMed ID: 25172992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.
    Rugolo M; Siliprandi D; Siliprandi N; Toninello A
    Biochem J; 1981 Dec; 200(3):481-6. PubMed ID: 6177312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine.
    Pezzi L
    Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ruthenium red affects the intrinsic fluorescence of the calcium-ATPase of skeletal sarcoplasmic reticulum.
    Moutin MJ; Rapin C; Dupont Y
    Biochim Biophys Acta; 1992 Jun; 1100(3):321-8. PubMed ID: 1377028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca2+ transport by mammalian mitochondria and its role in hormone action.
    Denton RM; McCormack JG
    Am J Physiol; 1985 Dec; 249(6 Pt 1):E543-54. PubMed ID: 2417490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [An energy dependent divalent cation-hydrogen ion binding in the outer membranes of rat liver mitochondria and its dependence on monovalent cation-hydrogen ion binding].
    Lutze G; Liese W
    FEBS Lett; 1974 May; 42(1):54-6. PubMed ID: 4848016
    [No Abstract]   [Full Text] [Related]  

  • 34. Regucalcin increases Ca2+-ATPase activity in the mitochondria of brain tissues of normal and transgenic rats.
    Yamaguchi M; Takakura Y; Nakagawa T
    J Cell Biochem; 2008 Jun; 104(3):795-804. PubMed ID: 18181158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux.
    Pozzan T; Bragadin M; Azzone GF
    Biochemistry; 1977 Dec; 16(25):5618-25. PubMed ID: 21688
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of La+++, Mn++ and ruthenium red on Mg-Ca-ATPase activity and ATP-dependent Ca-binding of the synaptic plasma membrane.
    Ichida S; Kuo CH; Matsuda T; Yoshida H
    Jpn J Pharmacol; 1976 Feb; (1):39-43. PubMed ID: 131208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ.
    Vercesi AE; Docampo R
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):463-7. PubMed ID: 1376113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues.
    Crompton M; Moser R; Lüdi H; Carafoli E
    Eur J Biochem; 1978 Jan; 82(1):25-31. PubMed ID: 23291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria.
    Jurkowitz MS; Geisbuhler T; Jung DW; Brierley GP
    Arch Biochem Biophys; 1983 May; 223(1):120-8. PubMed ID: 6190435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for more than one Ca2+ transport mechanism in mitochondria.
    Puskin JS; Gunter TE; Gunter KK; Russell PR
    Biochemistry; 1976 Aug; 15(17):3834-42. PubMed ID: 8094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.