BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 11029635)

  • 21. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures.
    Barbarosie M; Avoli M
    J Neurosci; 1997 Dec; 17(23):9308-14. PubMed ID: 9364076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased dendritic excitability in hippocampal ca1 in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis.
    Wu K; Leung LS
    Neuroscience; 2003; 116(2):599-616. PubMed ID: 12559115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice.
    Rafiq A; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1993 Nov; 70(5):1962-74. PubMed ID: 8294965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V; Both M; Draguhn A
    Eur J Neurosci; 2009 Mar; 29(6):1153-64. PubMed ID: 19302151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro.
    Kunitake A; Kunitake T; Stewart M
    Hippocampus; 2004; 14(8):986-99. PubMed ID: 15390173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CA3-released entorhinal seizures disclose dentate gyrus epileptogenicity and unmask a temporoammonic pathway.
    Barbarosie M; Louvel J; Kurcewicz I; Avoli M
    J Neurophysiol; 2000 Mar; 83(3):1115-24. PubMed ID: 10712442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subiculum network excitability is increased in a rodent model of temporal lobe epilepsy.
    de Guzman P; Inaba Y; Biagini G; Baldelli E; Mollinari C; Merlo D; Avoli M
    Hippocampus; 2006; 16(10):843-60. PubMed ID: 16897722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of spontaneous recurrent epileptiform discharges in hippocampal-entorhinal cortical slices prepared from chronic epileptic animals.
    Carter DS; Deshpande LS; Rafiq A; Sombati S; DeLorenzo RJ
    Seizure; 2011 Apr; 20(3):218-24. PubMed ID: 21168348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic optical signals and electrographic seizures in the rat limbic system.
    D'Arcangelo G; Tancredi V; Avoli M
    Neurobiol Dis; 2001 Dec; 8(6):993-1005. PubMed ID: 11741395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced ictogenic potential of 4-aminopyridine in the perirhinal and entorhinal cortex of kainate-treated chronic epileptic rats.
    Zahn RK; Tolner EA; Derst C; Gruber C; Veh RW; Heinemann U
    Neurobiol Dis; 2008 Feb; 29(2):186-200. PubMed ID: 17942314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro.
    Dhillon A; Jones RS
    Neuroscience; 2000; 99(3):413-22. PubMed ID: 11029534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spread of low Mg2+ induced epileptiform activity from the rat entorhinal cortex to the hippocampus after kindling studied in vitro.
    Behr J; Gloveli T; Gutierrez R; Heinemann U
    Neurosci Lett; 1996 Sep; 216(1):41-4. PubMed ID: 8892387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hippocampus versus entorhinal cortex decoupling by an NR2 subunit-specific block of NMDA receptors in a rat in vitro model of temporal lobe epilepsy.
    Berretta N; Ledonne A; Mango D; Bernardi G; Mercuri NB
    Epilepsia; 2012 May; 53(5):e80-4. PubMed ID: 22360154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles.
    Yaniv D; Vouimba RM; Diamond DM; Richter-Levin G
    Neuroscience; 2003; 120(4):1125-35. PubMed ID: 12927217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perirhinal cortex hyperexcitability in pilocarpine-treated epileptic rats.
    Benini R; Longo D; Biagini G; Avoli M
    Hippocampus; 2011 Jul; 21(7):702-13. PubMed ID: 20865722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus.
    Derchansky M; Shahar E; Wennberg RA; Samoilova M; Jahromi SS; Abdelmalik PA; Zhang L; Carlen PL
    Hippocampus; 2004; 14(8):935-47. PubMed ID: 15390177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus.
    Kim DS; Kim JE; Kwak SE; Choi KC; Kim DW; Kwon OS; Choi SY; Kang TC
    J Comp Neurol; 2008 Dec; 511(5):581-98. PubMed ID: 18853423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The entorhinal cortex and generation of seizure activity: studies of normal synaptic transmission and epileptogenesis in vitro.
    Jones RS; Heinemann UF; Lambert JD
    Epilepsy Res Suppl; 1992; 8():173-80. PubMed ID: 1329812
    [No Abstract]   [Full Text] [Related]  

  • 39. Hippocampus-entorhinal cortex loop and seizure generation in the young rodent limbic system.
    Calcagnotto ME; Barbarosie M; Avoli M
    J Neurophysiol; 2000 May; 83(5):3183-7. PubMed ID: 10805716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures.
    Bragin A; Engel J; Wilson CL; Fried I; Mathern GW
    Epilepsia; 1999 Feb; 40(2):127-37. PubMed ID: 9952257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.