BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 11029635)

  • 41. Ca2+-independent muscarinic excitation of rat medial entorhinal cortex layer V neurons.
    Egorov AV; Angelova PR; Heinemann U; Müller W
    Eur J Neurosci; 2003 Dec; 18(12):3343-51. PubMed ID: 14686907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Independent epileptiform discharge patterns in the olfactory and limbic areas of the in vitro isolated Guinea pig brain during 4-aminopyridine treatment.
    Carriero G; Uva L; Gnatkovsky V; Avoli M; de Curtis M
    J Neurophysiol; 2010 May; 103(5):2728-36. PubMed ID: 20220076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro.
    Khalilov I; Dzhala V; Medina I; Leinekugel X; Melyan Z; Lamsa K; Khazipov R; Ben-Ari Y
    Eur J Neurosci; 1999 Oct; 11(10):3468-80. PubMed ID: 10564355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two reentrant pathways in the hippocampal-entorhinal system.
    Kloosterman F; van Haeften T; Lopes da Silva FH
    Hippocampus; 2004; 14(8):1026-39. PubMed ID: 15390170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early Appearance and Spread of Fast Ripples in the Hippocampus in a Model of Cortical Traumatic Brain Injury.
    Ortiz F; Zapfe WPK; Draguhn A; Gutiérrez R
    J Neurosci; 2018 Oct; 38(42):9034-9046. PubMed ID: 30190413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of effects of valproate and trans-2-en-valproate on different forms of epileptiform activity in rat hippocampal and temporal cortex slices.
    Sokolova S; Schmitz D; Zhang CL; Löscher W; Heinemann U
    Epilepsia; 1998 Mar; 39(3):251-8. PubMed ID: 9578041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Excitatory and inhibitory control of epileptiform discharges in combined hippocampal/entorhinal cortical slices.
    Menendez de la Prida L; Pozo MA
    Brain Res; 2002 Jun; 940(1-2):27-35. PubMed ID: 12020871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synaptotagmin I hypothalamic knockdown prevents amygdaloid seizure-induced damage of hippocampal neurons but not of entorhinal neurons.
    Kobayashi S; Ohno K; Iwakuma M; Kaneda Y; Saji M
    Neurosci Res; 2002 Dec; 44(4):455-65. PubMed ID: 12445633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Somatostatin acts in CA1 and CA3 to reduce hippocampal epileptiform activity.
    Tallent MK; Siggins GR
    J Neurophysiol; 1999 Apr; 81(4):1626-35. PubMed ID: 10200199
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis.
    Bragin A; Wilson CL; Engel J
    Epilepsia; 2000; 41 Suppl 6():S144-52. PubMed ID: 10999536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synaptic transmission changes in fear memory circuits underlie key features of an animal model of schizophrenia.
    Pollard M; Varin C; Hrupka B; Pemberton DJ; Steckler T; Shaban H
    Behav Brain Res; 2012 Feb; 227(1):184-93. PubMed ID: 22085880
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy.
    Smith KL; Lee CL; Swann JW
    J Neurophysiol; 1998 Jan; 79(1):106-16. PubMed ID: 9425181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy.
    Tolner EA; Frahm C; Metzger R; Gorter JA; Witte OW; Lopes da Silva FH; Heinemann U
    Neurobiol Dis; 2007 May; 26(2):419-38. PubMed ID: 17350275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subiculum-entorhinal cortex interactions during in vitro ictogenesis.
    Herrington R; Lévesque M; Avoli M
    Seizure; 2015 Sep; 31():33-40. PubMed ID: 26362375
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy.
    Janz P; Savanthrapadian S; Häussler U; Kilias A; Nestel S; Kretz O; Kirsch M; Bartos M; Egert U; Haas CA
    Cereb Cortex; 2017 Mar; 27(3):2348-2364. PubMed ID: 27073230
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures.
    Benini R; Avoli M
    J Physiol; 2005 Aug; 566(Pt 3):885-900. PubMed ID: 15932889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit.
    Kajiwara R; Takashima I; Mimura Y; Witter MP; Iijima T
    J Neurophysiol; 2003 Apr; 89(4):2176-84. PubMed ID: 12611981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Responses of deep entorhinal cortex are epileptiform in an electrogenic rat model of chronic temporal lobe epilepsy.
    Fountain NB; Bear J; Bertram EH; Lothman EW
    J Neurophysiol; 1998 Jul; 80(1):230-40. PubMed ID: 9658044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.