BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11029687)

  • 1. Regulation of carbon metabolism in Chlamydia trachomatis.
    Iliffe-Lee ER; McClarty G
    Mol Microbiol; 2000 Oct; 38(1):20-30. PubMed ID: 11029687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia trachomatis lacks an adaptive response to changes in carbon source availability.
    Nicholson TL; Chiu K; Stephens RS
    Infect Immun; 2004 Jul; 72(7):4286-9. PubMed ID: 15213176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited.
    Iliffe-Lee ER; McClarty G
    Mol Microbiol; 1999 Jul; 33(1):177-87. PubMed ID: 10411734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection.
    Gérard HC; Krausse-Opatz B; Wang Z; Rudy D; Rao JP; Zeidler H; Schumacher HR; Whittum-Hudson JA; Köhler L; Hudson AP
    Mol Microbiol; 2001 Aug; 41(3):731-41. PubMed ID: 11532140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.
    Mehlitz A; Eylert E; Huber C; Lindner B; Vollmuth N; Karunakaran K; Goebel W; Eisenreich W; Rudel T
    Mol Microbiol; 2017 Mar; 103(6):1004-1019. PubMed ID: 27997721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism.
    Fields KA; Hackstadt T
    Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cortisol on glycogen and fructose-1,6-bisphosphatase in baby hamster kidney cells infected with Chlamydia trachomatis.
    Reed SI; Hann WD
    Can J Microbiol; 1980 Feb; 26(2):135-45. PubMed ID: 6250689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast of Glycogenesis and protein synthesis in monkey kidney cells and HeLa cells infected with Chlamydia trachomatis lymphogranuloma venereum.
    Weigent DA; Jenkin HM
    Infect Immun; 1978 Jun; 20(3):632-9. PubMed ID: 669815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis GlgA is secreted into host cell cytoplasm.
    Lu C; Lei L; Peng B; Tang L; Ding H; Gong S; Li Z; Wu Y; Zhong G
    PLoS One; 2013; 8(7):e68764. PubMed ID: 23894341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis CTP synthetase: molecular characterization and developmental regulation of expression.
    Wylie JL; Berry JD; McClarty G
    Mol Microbiol; 1996 Nov; 22(4):631-42. PubMed ID: 8951811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtle changes in host cell density cause a serious error in monitoring of the intracellular growth of Chlamydia trachomatis in a low-oxygen environment: Proposal for a standardized culture method.
    Sakai K; Matsuo J; Watanabe T; Okubo T; Nakamura S; Yamaguchi H
    J Microbiol Methods; 2018 Oct; 153():84-91. PubMed ID: 30240810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro.
    Leonard CA; Schoborg RV; Borel N
    PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells.
    Deka S; Vanover J; Dessus-Babus S; Whittimore J; Howett MK; Wyrick PB; Schoborg RV
    Cell Microbiol; 2006 Jan; 8(1):149-62. PubMed ID: 16367874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis.
    Engström P; Krishnan KS; Ngyuen BD; Chorell E; Normark J; Silver J; Bastidas RJ; Welch MD; Hultgren SJ; Wolf-Watz H; Valdivia RH; Almqvist F; Bergström S
    mBio; 2014 Dec; 6(1):e02304-14. PubMed ID: 25550323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of cycloheximide to study independent lipid metabolism of Chlamydia trachomatis cultivated in mouse L cells grown in serum-free medium.
    Reed SI; Anderson LE; Jenkin HM
    Infect Immun; 1981 Feb; 31(2):668-73. PubMed ID: 7216466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes required for assembly and function of the protein synthetic system in Chlamydia trachomatis are expressed early in elementary to reticulate body transformation.
    Gérard HC; Whittum-Hudson JA; Hudson AP
    Mol Gen Genet; 1997 Aug; 255(6):637-42. PubMed ID: 9323368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence.
    Deka S; Vanover J; Sun J; Kintner J; Whittimore J; Schoborg RV
    Cell Microbiol; 2007 Mar; 9(3):725-37. PubMed ID: 17140408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.