BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11029687)

  • 21. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.
    Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T
    Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycogen metabolism in Chlamydia-infected HeLa-cells.
    Fan VS; Jenkin HM
    J Bacteriol; 1970 Oct; 104(1):608-9. PubMed ID: 5473914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.
    Grieshaber SS; Grieshaber NA; Hackstadt T
    J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition.
    Peters J; Byrne GI
    Pathog Dis; 2015 Aug; 73(6):ftv028. PubMed ID: 25883118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell.
    Hatch GM; McClarty G
    Infect Immun; 1998 Aug; 66(8):3727-35. PubMed ID: 9673255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.
    Sixt BS; Siegl A; Müller C; Watzka M; Wultsch A; Tziotis D; Montanaro J; Richter A; Schmitt-Kopplin P; Horn M
    PLoS Pathog; 2013; 9(8):e1003553. PubMed ID: 23950718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CT295 Is
    Triboulet S; N'Gadjaga MD; Niragire B; Köstlbacher S; Horn M; Aimanianda V; Subtil A
    Front Cell Infect Microbiol; 2022; 12():866729. PubMed ID: 35795184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Premature apoptosis of Chlamydia-infected cells disrupts chlamydial development.
    Ying S; Pettengill M; Latham ER; Walch A; Ojcius DM; Häcker G
    J Infect Dis; 2008 Nov; 198(10):1536-44. PubMed ID: 18821848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis.
    Wylie JL; Hatch GM; McClarty G
    J Bacteriol; 1997 Dec; 179(23):7233-42. PubMed ID: 9393685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid.
    Lehr S; Vier J; Häcker G; Kirschnek S
    Microbes Infect; 2018 May; 20(5):284-292. PubMed ID: 29499390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of 6-thioguanine on Chlamydia trachomatis growth in wild-type and hypoxanthine-guanine phosphoribosyltransferase-deficient cells.
    Qin B; McClarty G
    J Bacteriol; 1992 May; 174(9):2865-73. PubMed ID: 1569017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

  • 35. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.
    Yamakawa K; Matsuo J; Okubo T; Nakamura S; Yamaguchi H
    J Infect Chemother; 2018 Feb; 24(2):130-137. PubMed ID: 29132924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of tryptophan synthase gene expression in Chlamydia trachomatis.
    Wood H; Fehlner-Gardner C; Berry J; Fischer E; Graham B; Hackstadt T; Roshick C; McClarty G
    Mol Microbiol; 2003 Sep; 49(5):1347-59. PubMed ID: 12940992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model.
    Chellas-Géry B; Linton CN; Fields KA
    Cell Microbiol; 2007 Oct; 9(10):2417-30. PubMed ID: 17532760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synovial Chlamydia trachomatis up regulates expression of a panel of genes similar to that transcribed by Mycobacterium tuberculosis during persistent infection.
    Gérard HC; Whittum-Hudson JA; Schumacher HR; Hudson AP
    Ann Rheum Dis; 2006 Mar; 65(3):321-7. PubMed ID: 16192289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.