These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 11029809)
1. ThurCatD: a tool for analyzing ratings on an ordinal category scale. Boschman MC Behav Res Methods Instrum Comput; 2000 Aug; 32(3):379-88. PubMed ID: 11029809 [TBL] [Abstract][Full Text] [Related]
2. DifScal: a tool for analyzing difference ratings on an ordinal category scale. Boschman MC Behav Res Methods Instrum Comput; 2001 Feb; 33(1):10-20. PubMed ID: 11296716 [TBL] [Abstract][Full Text] [Related]
3. Maximum likelihood estimation of difference scaling functions for suprathreshold judgments. Teti ES; Turton TL; Miller JM; Bujack R J Vis; 2022 Sep; 22(10):9. PubMed ID: 36083217 [TBL] [Abstract][Full Text] [Related]
4. Perceptual Judgments of Resonance, Nasal Airflow, Understandability, and Acceptability in Speakers With Cleft Palate: Ordinal Versus Visual Analogue Scaling. Castick S; Knight RA; Sell D Cleft Palate Craniofac J; 2017 Jan; 54(1):19-31. PubMed ID: 28067575 [TBL] [Abstract][Full Text] [Related]
5. Fitting a Thurstonian IRT model to forced-choice data using Mplus. Brown A; Maydeu-Olivares A Behav Res Methods; 2012 Dec; 44(4):1135-47. PubMed ID: 22733226 [TBL] [Abstract][Full Text] [Related]
6. Luce's choice model and Thurstone's categorical judgment model compared: Kornbrot's data revisited. Nosofsky RM Percept Psychophys; 1985 Jan; 37(1):89-91. PubMed ID: 3991325 [No Abstract] [Full Text] [Related]
7. Estimation of perceptual scales using ordinal embedding. Haghiri S; Wichmann FA; von Luxburg U J Vis; 2020 Sep; 20(9):14. PubMed ID: 32955551 [TBL] [Abstract][Full Text] [Related]
8. A MODIFICATION OF THURSTONE'S LAW OF COMPARATIVE JUDGMENT TO ACCOMMODATE A JUDGMENT CATEGORY OF "EQUAL" OR "NO DIFFERENCE". GREENBERG MG Psychol Bull; 1965 Aug; 64():108-12. PubMed ID: 14320075 [No Abstract] [Full Text] [Related]
9. Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables. Katsikatsou M; Moustaki I Psychometrika; 2016 Dec; 81(4):1046-1068. PubMed ID: 27734296 [TBL] [Abstract][Full Text] [Related]
10. [The use of the expectation-maximization (EM) algorithm for maximum likelihood estimation of gametic frequencies of multilocus polymorphic codominant systems based on sampled population data]. Sergeev AS; Arapova RK Genetika; 2002 Mar; 38(3):407-18. PubMed ID: 11963570 [TBL] [Abstract][Full Text] [Related]
11. A general class of latent variable models for ordinal manifest variables with covariate effects on the manifest and latent variables. Moustaki I Br J Math Stat Psychol; 2003 Nov; 56(Pt 2):337-57. PubMed ID: 14633339 [TBL] [Abstract][Full Text] [Related]
12. Cramér-Rao bounds for parametric shape estimation in inverse problems. Ye JC; Bresler Y; Moulin P IEEE Trans Image Process; 2003; 12(1):71-84. PubMed ID: 18237880 [TBL] [Abstract][Full Text] [Related]
13. Estimating parameters in the Rasch model in the presence of null categories. Luo G; Andrich D J Appl Meas; 2005; 6(2):128-46. PubMed ID: 15795482 [TBL] [Abstract][Full Text] [Related]
14. Restricted Maximum Likelihood Estimation for Parameters of the Social Relations Model. Nestler S Psychometrika; 2016 Dec; 81(4):1098-1117. PubMed ID: 26272179 [TBL] [Abstract][Full Text] [Related]
15. The trouble with quality filtering based on relative Cramér-Rao lower bounds. Kreis R Magn Reson Med; 2016 Jan; 75(1):15-8. PubMed ID: 25753153 [TBL] [Abstract][Full Text] [Related]
16. Estimating the pi* goodness of fit index for finite mixtures of item response models. Revuelta J Br J Math Stat Psychol; 2008 May; 61(Pt 1):93-113. PubMed ID: 18482477 [TBL] [Abstract][Full Text] [Related]
17. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Smith CS; Joseph N; Rieger B; Lidke KA Nat Methods; 2010 May; 7(5):373-5. PubMed ID: 20364146 [TBL] [Abstract][Full Text] [Related]
18. Selection of optimal AR spectral estimation method for EEG signals using Cramer-Rao bound. Subasi A Comput Biol Med; 2007 Feb; 37(2):183-94. PubMed ID: 16476421 [TBL] [Abstract][Full Text] [Related]
19. Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models. Ali S; Ali A; Khan SA; Hussain S Comput Math Methods Med; 2016; 2016():7329158. PubMed ID: 27746826 [TBL] [Abstract][Full Text] [Related]
20. A method for approximating the density of maximum-likelihood and maximum a posteriori estimates under a Gaussian noise model. Abbey CK; Clarkson E; Barrett HH; Müller SP; Rybicki FJ Med Image Anal; 1998 Dec; 2(4):395-403. PubMed ID: 10072205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]