BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11030224)

  • 1. The sequestration of hydroxyl ions by CO2 in liquid water: the physiological implications and the second function of carbonic anhydrase.
    Widdas WF; Baker GF
    Cytobios; 2000; 103(402):39-60. PubMed ID: 11030224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequestration of hydroxyl ions by C2 in liquid water: useful physiological roles for a reversible complex formation in the presence of protein catalysts.
    Widdas WF; Baker GF
    Cytobios; 2000; 103(404):177-92. PubMed ID: 11086713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases.
    Merz KM
    J Mol Biol; 1990 Aug; 214(4):799-802. PubMed ID: 1974931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic anhydrase and acid-base regulation in fish.
    Gilmour KM; Perry SF
    J Exp Biol; 2009 Jun; 212(Pt 11):1647-61. PubMed ID: 19448075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent hydrogen isotope effects and anion inhibition of CO2 hydration catalysed by carbonic anhydrase from Pisum sativum.
    Johansson IM; Forsman C
    Eur J Biochem; 1994 Sep; 224(3):901-7. PubMed ID: 7925414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of flatfish sperm motility by CO2 and carbonic anhydrase.
    Inaba K; Dréanno C; Cosson J
    Cell Motil Cytoskeleton; 2003 Jul; 55(3):174-87. PubMed ID: 12789662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acceleration of pH volume changes in human red cells by bicarbonate and the role of carbonic anhydrase.
    Widdas WF; Baker GF; Baker P
    Cytobios; 1994; 80(320):7-24. PubMed ID: 7736769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleophilic reaction by carbonic anhydrase model zinc compound: characterization of intermediates for CO2 hydration and phosphoester hydrolysis.
    Echizen T; Ibrahim MM; Nakata K; Izumi M; Ichikawa K; Shiro M
    J Inorg Biochem; 2004 Aug; 98(8):1347-60. PubMed ID: 15271511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-base physiology. Bicarbonate briefly CO2-free.
    Thomas RC
    Nature; 1995 Apr; 374(6523):597-8. PubMed ID: 7715698
    [No Abstract]   [Full Text] [Related]  

  • 10. Diffusion and chemical reaction as limiting factors in CO2 equilibration in lungs.
    Forster RE
    Fed Proc; 1982 Apr; 41(6):2125-7. PubMed ID: 6804271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.
    Yadav RR; Krishnamurthi K; Mudliar SN; Devi SS; Naoghare PK; Bafana A; Chakrabarti T
    J Basic Microbiol; 2014 Jun; 54(6):472-81. PubMed ID: 24740638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2.
    Gillon J; Yakir D
    Science; 2001 Mar; 291(5513):2584-7. PubMed ID: 11283366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of the catalytic mechanisms of the zinc and cadmium containing carbonic anhydrase.
    Marino T; Russo N; Toscano M
    J Am Chem Soc; 2005 Mar; 127(12):4242-53. PubMed ID: 15783206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proton buffering role for silica in diatoms.
    Milligan AJ; Morel FM
    Science; 2002 Sep; 297(5588):1848-50. PubMed ID: 12228711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of carbonic anhydrase activity in blood by alteration in pH.
    Tripathi K; Upadhyay L
    Indian J Exp Biol; 1998 Sep; 36(9):940-2. PubMed ID: 9854436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 transduction mechanisms in avian intrapulmonary chemoreceptors: experiments and models.
    Hempleman SC; Posner RG
    Respir Physiol Neurobiol; 2004 Dec; 144(2-3):203-14. PubMed ID: 15556103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase.
    Bergquist C; Fillebeen T; Morlok MM; Parkin G
    J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Dioxide Sequestration by Using a Model Carbonic Anhydrase Complex in Tertiary Amine Medium.
    Sivanesan D; Choi Y; Lee J; Youn MH; Park KT; Grace AN; Kim HJ; Jeong SK
    ChemSusChem; 2015 Dec; 8(23):3977-82. PubMed ID: 26564396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of branchial carbonic anhydrase in acid-base regulation in rainbow trout (Oncorhynchus mykiss).
    Georgalis T; Perry SF; Gilmour KM
    J Exp Biol; 2006 Feb; 209(Pt 3):518-30. PubMed ID: 16424102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-bound carbonic anhydrases in osteoclasts.
    Riihonen R; Supuran CT; Parkkila S; Pastorekova S; Väänänen HK; Laitala-Leinonen T
    Bone; 2007 Apr; 40(4):1021-31. PubMed ID: 17291844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.