These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11030533)

  • 1. Shockwave frequency affects fragmentation in a kidney stone model.
    Weir MJ; Tariq N; Honey RJ
    J Endourol; 2000 Sep; 14(7):547-50. PubMed ID: 11030533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency.
    Yong DZ; Lipkin ME; Simmons WN; Sankin G; Albala DM; Zhong P; Preminger GM
    J Endourol; 2011 Sep; 25(9):1507-11. PubMed ID: 21834658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT Texture Analysis of Ex Vivo Renal Stones Predicts Ease of Fragmentation with Shockwave Lithotripsy.
    Cui HW; Devlies W; Ravenscroft S; Heers H; Freidin AJ; Cleveland RO; Ganeshan B; Turney BW
    J Endourol; 2017 Jul; 31(7):694-700. PubMed ID: 28474533
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Rassweiler J; Rieker P; Pecha R; Dressel M; Rassweiler-Seyfried MC
    J Endourol; 2022 Feb; 36(2):266-272. PubMed ID: 34314251
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of fat, muscle, and kidney on stone fragmentation by shockwave lithotripsy: an in vitro study.
    Hammad FT; Al Najjar A
    J Endourol; 2010 Feb; 24(2):289-92. PubMed ID: 20078241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of shockwave frequencies of 30 and 60 shocks per minute for kidney stones: a prospective randomized study.
    Altok M; Güneş M; Umul M; Şahin AF; Baş E; Oksay T; Soyupek S
    Scand J Urol; 2016 Dec; 50(6):477-482. PubMed ID: 27670851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Third prize: the impact of fluid environment manipulation on shockwave lithotripsy artificial calculi fragmentation rates.
    Méndez-Probst CE; Fernadez A; Erdeljan P; Vanjecek M; Cadieux PA; Razvi H
    J Endourol; 2011 Mar; 25(3):397-401. PubMed ID: 21401394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting effectiveness of extracorporeal shockwave lithotripsy by stone attenuation value.
    Shah K; Kurien A; Mishra S; Ganpule A; Muthu V; Sabnis RB; Desai M
    J Endourol; 2010 Jul; 24(7):1169-73. PubMed ID: 20575686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroconductive lithotripsy: principles, experimental data, and first clinical results of the Sonolith 4000.
    Flam TA; Bourlion M; Thiounn N; Saporta F; Chiche R; Dancer P; Zerbib M; Debré B
    J Endourol; 1994 Aug; 8(4):249-55. PubMed ID: 7981733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CT attenuation value and shockwave fragmentation.
    Favela R; Gutierrez J; Bustos J; Castaño-Tostado E; Loske AM
    J Endourol; 2005; 19(1):5-10. PubMed ID: 15735374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial.
    Pace KT; Ghiculete D; Harju M; Honey RJ;
    J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Aug; 23(8):1247-53. PubMed ID: 19580352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of the Duet lithotripter using two energy sources for stone fragmentation by shockwaves: an in vitro study.
    Greenstein A; Sofer M; Matzkin H
    J Endourol; 2004 Dec; 18(10):942-5. PubMed ID: 15801358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracorporeal shockwave lithotripsy for renal stones in pediatric patients: a multivariate analysis model for estimating the stone-free probability.
    El-Nahas AR; El-Assmy AM; Awad BA; Elhalwagy SM; Elshal AM; Sheir KZ
    Int J Urol; 2013 Dec; 20(12):1205-10. PubMed ID: 23441845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of urine specific gravity on effectiveness of shockwave lithotripsy.
    Li CC; Finley DS; Uribe C; Eichel L; Lee DI; McDougall EM; Clayman RV
    J Endourol; 2005 Mar; 19(2):167-9. PubMed ID: 15798412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progressive increase of lithotripter output produces better in-vivo stone comminution.
    Maloney ME; Marguet CG; Zhou Y; Kang DE; Sung JC; Springhart WP; Madden J; Zhong P; Preminger GM
    J Endourol; 2006 Sep; 20(9):603-6. PubMed ID: 16999607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study.
    You D; Park J; Hong B; Park HK
    Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Update on technological and selection factors influencing shockwave lithotripsy of renal stones in adults and children.
    Cortes JA; Motamedinia P; Gupta M
    Curr Opin Urol; 2011 Mar; 21(2):134-40. PubMed ID: 21285719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.