These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 11030742)
1. Molecular dynamics simulation of human prion protein including both N-linked oligosaccharides and the GPI anchor. Zuegg J; Gready JE Glycobiology; 2000 Oct; 10(10):959-74. PubMed ID: 11030742 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions. Zuegg J; Gready JE Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232 [TBL] [Abstract][Full Text] [Related]
3. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Viles JH; Donne D; Kroon G; Prusiner SB; Cohen FE; Dyson HJ; Wright PE Biochemistry; 2001 Mar; 40(9):2743-53. PubMed ID: 11258885 [TBL] [Abstract][Full Text] [Related]
4. Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments. Dima RI; Thirumalai D Biophys J; 2002 Sep; 83(3):1268-80. PubMed ID: 12202354 [TBL] [Abstract][Full Text] [Related]
5. α2,3 linkage of sialic acid to a GPI anchor and an unpredicted GPI attachment site in human prion protein. Kobayashi A; Hirata T; Nishikaze T; Ninomiya A; Maki Y; Takada Y; Kitamoto T; Kinoshita T J Biol Chem; 2020 May; 295(22):7789-7798. PubMed ID: 32321762 [TBL] [Abstract][Full Text] [Related]
6. Preventing misfolding of the prion protein by trimethylamine N-oxide. Bennion BJ; DeMarco ML; Daggett V Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389 [TBL] [Abstract][Full Text] [Related]
7. Determinants of the in vivo folding of the prion protein. A bipartite function of helix 1 in folding and aggregation. Winklhofer KF; Heske J; Heller U; Reintjes A; Muranyi W; Moarefi I; Tatzelt J J Biol Chem; 2003 Apr; 278(17):14961-70. PubMed ID: 12556465 [TBL] [Abstract][Full Text] [Related]
8. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein. Taguchi Y; Mistica AM; Kitamoto T; Schätzl HM PLoS Pathog; 2013; 9(6):e1003466. PubMed ID: 23825952 [TBL] [Abstract][Full Text] [Related]
9. Prion protein-related proteins from zebrafish are complex glycosylated and contain a glycosylphosphatidylinositol anchor. Miesbauer M; Bamme T; Riemer C; Oidtmann B; Winklhofer KF; Baier M; Tatzelt J Biochem Biophys Res Commun; 2006 Mar; 341(1):218-24. PubMed ID: 16414019 [TBL] [Abstract][Full Text] [Related]
10. Characterization of cell-surface prion protein relative to its recombinant analogue: insights from molecular dynamics simulations of diglycosylated, membrane-bound human prion protein. DeMarco ML; Daggett V J Neurochem; 2009 Apr; 109(1):60-73. PubMed ID: 19226372 [TBL] [Abstract][Full Text] [Related]
11. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds. Chamachi NG; Chakrabarty S Biochemistry; 2017 Feb; 56(6):833-844. PubMed ID: 28102071 [TBL] [Abstract][Full Text] [Related]
12. The prion protein globular domain and disease-related mutants studied by molecular dynamics simulations. Billeter M; Wüthrich K Arch Virol Suppl; 2000; (16):251-63. PubMed ID: 11214929 [TBL] [Abstract][Full Text] [Related]
13. Comparative computational analysis of prion proteins reveals two fragments with unusual structural properties and a pattern of increase in hydrophobicity associated with disease-promoting mutations. Kuznetsov IB; Rackovsky S Protein Sci; 2004 Dec; 13(12):3230-44. PubMed ID: 15557265 [TBL] [Abstract][Full Text] [Related]
14. Post-translational modifications of the Dictyostelium discoideum glycoprotein PsA. Glycosylphosphatidylinositol membrane anchor and composition of O-linked oligosaccharides. Haynes PA; Gooley AA; Ferguson MA; Redmond JW; Williams KL Eur J Biochem; 1993 Sep; 216(3):729-37. PubMed ID: 8404891 [TBL] [Abstract][Full Text] [Related]
15. Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation. Bate C; Nolan W; Williams A Prion; 2016 Mar; 10(2):127-30. PubMed ID: 26901126 [TBL] [Abstract][Full Text] [Related]
16. Structural instability of the prion protein upon M205S/R mutations revealed by molecular dynamics simulations. Hirschberger T; Stork M; Schropp B; Winklhofer KF; Tatzelt J; Tavan P Biophys J; 2006 Jun; 90(11):3908-18. PubMed ID: 16513786 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the effect of glycosylation on human prion protein by molecular dynamics. Zhong L; Xie J J Biomol Struct Dyn; 2009 Apr; 26(5):525-33. PubMed ID: 19236103 [TBL] [Abstract][Full Text] [Related]
19. Molecular Dynamics Simulation Study on the Binding and Stabilization Mechanism of Antiprion Compounds to the "Hot Spot" Region of PrP Zhou S; Liu X; An X; Yao X; Liu H ACS Chem Neurosci; 2017 Nov; 8(11):2446-2456. PubMed ID: 28795797 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of a truncated prion protein, PrP(113-231), from (15)N NMR relaxation: order parameters calculated and slow conformational fluctuations localized to a distinct region. O'Sullivan DB; Jones CE; Abdelraheim SR; Brazier MW; Toms H; Brown DR; Viles JH Protein Sci; 2009 Feb; 18(2):410-23. PubMed ID: 19173221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]