These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 11031119)
1. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. Larson SM; Di Nardo AA; Davidson AR J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119 [TBL] [Abstract][Full Text] [Related]
2. Mutagenesis of a buried polar interaction in an SH3 domain: sequence conservation provides the best prediction of stability effects. Maxwell KL; Davidson AR Biochemistry; 1998 Nov; 37(46):16172-82. PubMed ID: 9819209 [TBL] [Abstract][Full Text] [Related]
3. Analysis and prediction of functional sub-types from protein sequence alignments. Hannenhalli SS; Russell RB J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970 [TBL] [Abstract][Full Text] [Related]
4. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B; Via A; Cestra G; Cesareni G; Helmer-Citterich M J Mol Biol; 2000 Apr; 298(2):313-28. PubMed ID: 10764600 [TBL] [Abstract][Full Text] [Related]
5. SnapDRAGON: a method to delineate protein structural domains from sequence data. George RA; Heringa J J Mol Biol; 2002 Feb; 316(3):839-51. PubMed ID: 11866536 [TBL] [Abstract][Full Text] [Related]
6. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Rath A; Davidson AR Protein Sci; 2000 Dec; 9(12):2457-69. PubMed ID: 11206067 [TBL] [Abstract][Full Text] [Related]
7. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM; Davidson AR Protein Sci; 2000 Nov; 9(11):2170-80. PubMed ID: 11152127 [TBL] [Abstract][Full Text] [Related]
8. A fast method to predict protein interaction sites from sequences. Gallet X; Charloteaux B; Thomas A; Brasseur R J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732 [TBL] [Abstract][Full Text] [Related]
9. Contributions of residue pairing to beta-sheet formation: conservation and covariation of amino acid residue pairs on antiparallel beta-strands. Mandel-Gutfreund Y; Zaremba SM; Gregoret LM J Mol Biol; 2001 Feb; 305(5):1145-59. PubMed ID: 11162120 [TBL] [Abstract][Full Text] [Related]
10. An evolutionary trace method defines binding surfaces common to protein families. Lichtarge O; Bourne HR; Cohen FE J Mol Biol; 1996 Mar; 257(2):342-58. PubMed ID: 8609628 [TBL] [Abstract][Full Text] [Related]
12. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
13. Hydrophobic core packing in the SH3 domain folding transition state. Northey JG; Di Nardo AA; Davidson AR Nat Struct Biol; 2002 Feb; 9(2):126-30. PubMed ID: 11786916 [TBL] [Abstract][Full Text] [Related]
14. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Polverini E; Rangaraj G; Libich DS; Boggs JM; Harauz G Biochemistry; 2008 Jan; 47(1):267-82. PubMed ID: 18067320 [TBL] [Abstract][Full Text] [Related]
15. Dramatic stabilization of an SH3 domain by a single substitution: roles of the folded and unfolded states. Mok YK; Elisseeva EL; Davidson AR; Forman-Kay JD J Mol Biol; 2001 Mar; 307(3):913-28. PubMed ID: 11273710 [TBL] [Abstract][Full Text] [Related]
16. Structural insight into the binding diversity between the human Nck2 SH3 domains and proline-rich proteins. Liu J; Li M; Ran X; Fan JS; Song J Biochemistry; 2006 Jun; 45(23):7171-84. PubMed ID: 16752908 [TBL] [Abstract][Full Text] [Related]
17. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures. Ouzounis C; Sander C; Scharf M; Schneider R J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272 [TBL] [Abstract][Full Text] [Related]
18. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios. Pei J; Cai W; Kinch LN; Grishin NV Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237 [TBL] [Abstract][Full Text] [Related]
19. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Masso M; Vaisman II Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749 [TBL] [Abstract][Full Text] [Related]
20. Protein structure prediction based on sequence similarity. Jaroszewski L Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]