These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 1103131)

  • 1. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.
    Anderson RA; Kennedy FS; Vallee BL
    Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of magnesium on the properties of zinc alkaline phosphatase.
    Bosron WF; Anderson RA; Falk MC; Kennedy FS; Vallee BL
    Biochemistry; 1977 Feb; 16(4):610-4. PubMed ID: 13822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc and magnesium content of alkaline phosphatase from Escherichia coli.
    Bosron WF; Kennedy FS; Vallee BL
    Biochemistry; 1975 May; 14(10):2275-82. PubMed ID: 238559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 6. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase.
    Anderson RA; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):394-7. PubMed ID: 164026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective cobalt oxidation as a means to differentiate metal-binding sites of cobalt alkaline phosphatase.
    Anderson RA; Vallee BL
    Biochemistry; 1977 Oct; 16(20):4388-93. PubMed ID: 199235
    [No Abstract]   [Full Text] [Related]  

  • 8. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase.
    Murphy JE; Xu X; Kantrowitz ER
    J Biol Chem; 1993 Oct; 268(29):21497-500. PubMed ID: 8407998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc and magnesium in the uterus of the pregnant and pseudopregnant mouse and the effects of Mg2+ ions on uterine alkaline phosphatase.
    Buxton LE; Murdoch RN
    Aust J Biol Sci; 1981; 34(2):211-20. PubMed ID: 7283878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Aug; 124(1):25-30. PubMed ID: 4942389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli.
    Simpson RT; Vallee BL
    Biochemistry; 1968 Dec; 7(12):4343-50. PubMed ID: 4882708
    [No Abstract]   [Full Text] [Related]  

  • 16. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase.
    Hung HC; Chang GG
    Protein Sci; 2001 Jan; 10(1):34-45. PubMed ID: 11266592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replacement of metal in metalloenzymes. A lead-alkaline phosphatase.
    Sabbioni E; Girardi F; Marafante E
    Biochemistry; 1976 Jan; 15(2):271-6. PubMed ID: 813761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase: the influence of zinc on protein structure and a conformational change induced by phosphate binding.
    Hull WE; Sykes BD
    Biochemistry; 1976 Apr; 15(7):1535-46. PubMed ID: 4091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography.
    Bock JL; Kowalsky A
    Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.