These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 11031518)
1. Performance of discrete heat engines and heat pumps in finite time. Feldmann T; Kosloff R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4774-90. PubMed ID: 11031518 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of the limit cycle of a reciprocating quantum heat engine. Feldmann T; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046110. PubMed ID: 15600463 [TBL] [Abstract][Full Text] [Related]
3. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior. Bizarro JP; Rodrigues P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051109. PubMed ID: 23214740 [TBL] [Abstract][Full Text] [Related]
4. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C; Ding Z; Chen L; Ge Y; Feng H Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398 [TBL] [Abstract][Full Text] [Related]
5. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Feldmann T; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016101. PubMed ID: 12935194 [TBL] [Abstract][Full Text] [Related]
6. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine. Ma YH Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771 [TBL] [Abstract][Full Text] [Related]
7. Quantum limit to nonequilibrium heat-engine performance imposed by strong system-reservoir coupling. Newman D; Mintert F; Nazir A Phys Rev E; 2020 May; 101(5-1):052129. PubMed ID: 32575334 [TBL] [Abstract][Full Text] [Related]
8. Efficiency of a cyclic quantum heat engine with finite-size baths. Mohammady MH; Romito A Phys Rev E; 2019 Jul; 100(1-1):012122. PubMed ID: 31499920 [TBL] [Abstract][Full Text] [Related]
9. Minimal universal quantum heat machine. Gelbwaser-Klimovsky D; Alicki R; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316 [TBL] [Abstract][Full Text] [Related]
10. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related]
11. Power-Optimal Control of a Stirling Engine's Frictional Piston Motion. Paul R; Khodja A; Fischer A; Masser R; Hoffmann KH Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327873 [TBL] [Abstract][Full Text] [Related]
12. Efficiency at maximum power output of quantum heat engines under finite-time operation. Wang J; He J; Wu Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076 [TBL] [Abstract][Full Text] [Related]
15. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle. Kennedy IR; Hodzic M Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401 [TBL] [Abstract][Full Text] [Related]
16. Quantum heat engines and refrigerators: continuous devices. Kosloff R; Levy A Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798 [TBL] [Abstract][Full Text] [Related]
17. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling. Ito K; Hayashi M Phys Rev E; 2018 Jan; 97(1-1):012129. PubMed ID: 29448373 [TBL] [Abstract][Full Text] [Related]
18. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Wang J; He J; Ma Y Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038 [TBL] [Abstract][Full Text] [Related]
19. Quantum refrigerators and the third law of thermodynamics. Levy A; Alicki R; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070 [TBL] [Abstract][Full Text] [Related]
20. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]