These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11031518)

  • 41. Boosting the performance of quantum Otto heat engines.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cooling Cycle Optimization for a Vuilleumier Refrigerator.
    Paul R; Khodja A; Fischer A; Hoffmann KH
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Algorithmic quantum heat engines.
    Köse E; Çakmak S; Gençten A; Kominis IK; Müstecaplıoğlu ÖE
    Phys Rev E; 2019 Jul; 100(1-1):012109. PubMed ID: 31499932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atmospheric dynamics. Constrained work output of the moist atmospheric heat engine in a warming climate.
    Laliberté F; Zika J; Mudryk L; Kushner PJ; Kjellsson J; Döös K
    Science; 2015 Jan; 347(6221):540-3. PubMed ID: 25635098
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyclic heat engines with nonisentropic adiabats and generalization to steady-state devices including thermoelectric converters.
    Gerstenmaier YC
    Phys Rev E; 2022 Jun; 105(6-1):064136. PubMed ID: 35854556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite-time performance of a single-ion quantum Otto engine.
    Chand S; Dasgupta S; Biswas A
    Phys Rev E; 2021 Mar; 103(3-1):032144. PubMed ID: 33862721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.
    Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051112. PubMed ID: 23214743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extracting work from random collisions: A model of a quantum heat engine.
    Shaghaghi V; Palma GM; Benenti G
    Phys Rev E; 2022 Mar; 105(3-1):034101. PubMed ID: 35428074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical Autonomous Stochastic Heat Engine.
    Serra-Garcia M; Foehr A; Molerón M; Lydon J; Chong C; Daraio C
    Phys Rev Lett; 2016 Jul; 117(1):010602. PubMed ID: 27419553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finite-Time Thermodynamic Model for Evaluating Heat Engines in Ocean Thermal Energy Conversion.
    Yasunaga T; Ikegami Y
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285986
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quest for absolute zero in the presence of external noise.
    Torrontegui E; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032103. PubMed ID: 24125210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.
    Kolář M; Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev Lett; 2012 Aug; 109(9):090601. PubMed ID: 23002817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.